Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc C=90-40=50 độ
sin C=AB/BC
=>7/BC=sin50
=>BC=9,14(cm)
=>\(AC\simeq5,88\left(cm\right)\)
b: góc B=90-30=60 độ
sin C=AB/BC
=>AB/16=1/2
=>AB=8cm
=>AC=8*căn 3(cm)
c: BC=căn 18^2+21^2=3*căn 85(cm)
tan C=AB/AC=6/7
=>góc C=41 độ
=>góc B=49 độ
d: AB=căn 13^2-12^2=5cm
sin C=AB/BC=5/13
=>góc C=23 độ
=>góc B=67 độ
b) Ta có:
\(\widehat{B}=180^o-90^o-42^o=48^o\)
Xét tam giác ABC vuông tại A ta có:
\(cosB=\dfrac{AB}{BM}\Rightarrow cos48^o=\dfrac{6}{BM}\)
\(\Rightarrow BM=\dfrac{6}{cos48^o}\approx9\left(cm\right)\)
Mà: \(sinB=\dfrac{AM}{BM}\Rightarrow sin48^o=\dfrac{AM}{9}\)
\(\Rightarrow AM=9\cdot sin48^o\approx6,7\left(cm\right)\)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C
a) Ta có:
\(\widehat{B}=180^o-90^o-52^o=28^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin28^o=\dfrac{AC}{12}\)
\(\Rightarrow AC=sin28^o\cdot12\approx3,25\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-3,25^2}\)
\(\Rightarrow AB\approx11,55\left(cm\right)\)
b) Áp dụng Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{5^2+8^2}\approx9,43\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{9,43}\)
\(\Rightarrow\widehat{B}\approx58^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-58^o=22^o\)
c) Ta có:
\(\widehat{C}=180^o-90^o-35^o=55^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin35^o=\dfrac{10}{BC}\)
\(\Rightarrow BC=\dfrac{10}{sin35^o}\approx17,43\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB^2=BC^2-AC^2\)
\(\Rightarrow AB=\sqrt{17,43^2-10^2}\approx14,27\left(cm\right)\)
a) \(\widehat{B}=180^o-90^o-52^o=38^o\)
\(sinB=\dfrac{AC}{BC}\Rightarrow sin38^o=\dfrac{AC}{12}\)
\(\Rightarrow AC=12\cdot sin38^o\approx7,38\left(cm\right)\)
Áp dụng Py-ta-go ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-7,38^2}\approx9,46\left(cm\right)\)
b) \(\widehat{C}=180^o-90^o-58^o=32^o\)
c: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác
nên AEDF là hình vuông