Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNP vuông tại M và ΔHIP vuông tại H có
góc P chung
=>ΔMNP đồng dạng với ΔHIP
b: IN/IP=MN/MP=3/4
=>IN/3=IP/4=(IN+IP)/(3+4)=5/7
=>IN=15/7cm; IP=20/7cm
IH//MN
=>IH/MN=PI/PN
=>IH/3=20/7:5=4/7
=>IH=12/7cm
Ta có: <A+<B+<C=180
90+30+<C=180
<c=180-30-90=60
Xét ▲ABC và ▲MNP ta có:
<A=<M=90
<C=<P(=60)
Do đó ▲ABC đồng dạng ▲MNP(g-g)
a: IN/IP=MN/MP=3/5
c: NP=căn 10^2-6^2=8cm
NI là phân giác
=>NI/MN=IP/MP
=>NI/3=NP/5=8/8=1
=>NI=3cm
S MNI=1/2*3*6=9cm2
cho tam giác MNP vuông tại M có MN=4cm;MP=3cm
a)tính đọ dài NP và so sánh các góc của tam giác MNP
b)Trên tia đối tia PM lấy A sao cho P là trung điểm của đoạn thẳng AM.QUa P dựng đường thẳng vuông góc với AM cắt AN tại C.C/m tam giác CPM=tam giác CPA
c)C/m CM=CN
d)GỌi G là giao điểm của MC và NP.TÍnh NG
e)Từ A vẽ đường thẳng vuông góc với NP tại D.Vẽ tia Nx là tia phân giác của góc MNP,vẽ tia Ay là tian pg của PAD,tia Ay cắt các tia NP,Nx,NM lần lượt tại E,H,K.C/m tam giác NEK cân
a) ta có :
KI vuông góc vs MN (gt),MNvuông góc vs MP (gt), IP' vuông góc vs MP(gt)
suy ra : tứ giác MKIP' là hình chữ nhật(đpcm)
b) ta có : MI = KP (tc hai đường chéo HCN)
suy ra : MF = FI (gt)
KF = P'F = 1/2KP' = 1/2 MF(tc)
vậy 3 đm K,F,P' thẳng hàng
c) ta có :
KI vuông góc vs NM (gt) , mà MN vuông góc vs MP (gt)
suy ra :
KI song song vs MP , có PI = IN (gt)
suy ra : tam giác MNP có KI là ĐBH
suy ra IK bằng 1/2 MP (tc)
có : KI + MP' (hcn) , vậy suy ra : KI = MP' = P'P (tc),vậy MP' = P'P (tc) (1)
có IP' = P'L (tc) (2)
mà IL vuông góc vs MP (gt) (3)
vậy từ (1),(2) và (3) suy ra : tứ giác MIPL là hinh thoi
b: Ta có: ΔMNP vuông tại M
nên \(\widehat{P}+\widehat{N}=90^0\)
hay \(\widehat{N}=30^0\)
Xét ΔMNP vuông tại M có
\(NP=\dfrac{MP}{\dfrac{1}{2}}=\dfrac{24}{\dfrac{1}{2}}=48\left(cm\right)\)
Áp dụng định lí Pytago vào ΔMPN vuông tại M, ta được:
\(NP^2=MN^2+MP^2\)
\(\Leftrightarrow MN^2=48^2-24^2=1728\)
hay \(MN=24\sqrt{3}\left(cm\right)\)