K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2015

a, Tam giác ABC vuông 

=> B + C  = 90 độ => B = 90 -48 = 42

TAm gác ABC vuông tại A , theo tỉ sô lượng giác cạnh và góc 

 AB = AC x SIn B = 8 x sin 42 = sấp sỉ 5,35 

Sin B = AC / BC => BC = AC/ sin B = 8/sin 42 sáp sỉ 11,45

CÁc câu khac tương tự

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=55^0\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(BC=15:sin55\simeq18.31\left(cm\right)\)

\(AB=\sqrt{BC^2-AC^2}\simeq10,5\left(cm\right)\)

b: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-50^0=40^0\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(BC=8:sin50\simeq10,44\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq6,71\left(cm\right)\)

a: \(\widehat{B}=90^0-30^0=60^0\)

XétΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

nên AB=5cm

=>\(AC=5\sqrt{3}\left(cm\right)\)

b: \(\widehat{C}=90^0-30^0=60^0\)

Xét ΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

hay \(BC=16\sqrt{3}\left(cm\right)\)

=>\(AC=8\sqrt{3}\left(cm\right)\)

Đề sai hết ở cả hai câu rồi bạn

c: Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC=2a\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{a}{a\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)

\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2a}{a\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{a}{2a}=\dfrac{1}{2}\)

\(\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2a}{a}=2\)

5 tháng 10 2023

b) Ta có:

\(\widehat{B}=180^o-90^o-42^o=48^o\) 

Xét tam giác ABC vuông tại A ta có:

\(cosB=\dfrac{AB}{BM}\Rightarrow cos48^o=\dfrac{6}{BM}\)

\(\Rightarrow BM=\dfrac{6}{cos48^o}\approx9\left(cm\right)\) 

Mà: \(sinB=\dfrac{AM}{BM}\Rightarrow sin48^o=\dfrac{AM}{9}\)

\(\Rightarrow AM=9\cdot sin48^o\approx6,7\left(cm\right)\) 

1 tháng 10 2023

a) Ta có:

\(\widehat{B}=180^o-90^o-52^o=28^o\) 

\(sinB=\dfrac{AC}{BC}\Rightarrow sin28^o=\dfrac{AC}{12}\)

\(\Rightarrow AC=sin28^o\cdot12\approx3,25\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB^2=BC^2-AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-3,25^2}\)

\(\Rightarrow AB\approx11,55\left(cm\right)\)

b) Áp dụng Py-ta-go ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{5^2+8^2}\approx9,43\left(cm\right)\) 

Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{8}{9,43}\)

\(\Rightarrow\widehat{B}\approx58^o\)

\(\Rightarrow\widehat{C}=180^o-90^o-58^o=22^o\)

c) Ta có:

\(\widehat{C}=180^o-90^o-35^o=55^o\)

\(sinB=\dfrac{AC}{BC}\Rightarrow sin35^o=\dfrac{10}{BC}\)

\(\Rightarrow BC=\dfrac{10}{sin35^o}\approx17,43\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB^2=BC^2-AC^2\)

\(\Rightarrow AB=\sqrt{17,43^2-10^2}\approx14,27\left(cm\right)\)

1 tháng 10 2023

a) \(\widehat{B}=180^o-90^o-52^o=38^o\)

\(sinB=\dfrac{AC}{BC}\Rightarrow sin38^o=\dfrac{AC}{12}\)

\(\Rightarrow AC=12\cdot sin38^o\approx7,38\left(cm\right)\)

Áp dụng Py-ta-go ta có:

\(AB=\sqrt{BC^2-AC^2}=\sqrt{12^2-7,38^2}\approx9,46\left(cm\right)\) 

b) \(\widehat{C}=180^o-90^o-58^o=32^o\)

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

a. 

$\widehat{C}=90^0-\widehat{B}=90^0-58^0=32^0$

$\cos B=\frac{c}{a}\Rightarrow c=a\cos B=72\cos 58^0=38,15$ (cm)

$\sin B=\frac{b}{a}\Rightarrow b=a\sin B=72\sin 58^0=61,06$ (cm)

b.

$\widehat{C}=90^0-\widehat{B}=90^0-40^0=50^0$

$\sin B=\frac{b}{a}\Rightarrow a=\frac{b}{\sin B}=\frac{20}{\sin 40^0}=31,11^0$

$\tan B=\frac{b}{c}\Rightarrow c=\frac{20}{\tan 40^0}=23,84^0$

 

AH
Akai Haruma
Giáo viên
15 tháng 8 2021

c.

$\widehat{B}=90^0-\widehat{C}=90^0-30^0=60^0$

$\tan B=\frac{b}{c}\Rightarrow c=\frac{b}{\tan B}=\frac{15}{\tan 60^0}=5\sqrt{3}$ (cm)

$\sin B=\frac{b}{a}\Rightarrow a=\frac{b}{\sin B}=\frac{15}{\sin 60^0}=10\sqrt{3}$ (cm)

d

$a=\sqrt{b^2+c^2}=\sqrt{21^2+18^2}=3\sqrt{85}$ (cm)

$\tan B=\frac{b}{c}=\frac{21}{18}=\frac{7}{6}$

$\Rightarrow \widehat{B}=49,4^0$

$\widehat{C}=90^0-\widehat{B}=40,6^0$

25 tháng 10 2021

c: \(BC=\sqrt{42^2+36^2}=6\sqrt{85}\left(cm\right)\)

\(\widehat{B}\simeq41^0\)

\(\widehat{C}=49^0\)