K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2024

Xét ΔABC có \(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)

=>\(\dfrac{AB}{sin40}=\dfrac{8}{sin50}\)

=>\(AB=8\cdot\dfrac{sin40}{sin50}\simeq6,71\left(cm\right)\)

Xét ΔABC có \(\widehat{B}+\widehat{C}=50^0+40^0=90^0\)

nên ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\simeq\dfrac{1}{2}\cdot8\cdot6,71=26,84\left(cm^2\right)\)

Xét ΔABC có \(\dfrac{AB}{sinC}=2R\)

=>\(2R=\dfrac{6.71}{sin40}\simeq10,44\)

=>\(R\simeq5,22\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{8^2+6,71^2}\simeq10,44\left(cm\right)\)

\(p=\dfrac{AB+AC+BC}{2}=\dfrac{6,71+8+10,44}{2}\simeq12,6\left(cm\right)\)

\(r=\dfrac{S}{p}=\dfrac{26.84}{12,6}\simeq2,13\left(cm\right)\)

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Theo định lí sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R\quad (*)\)

+) Ta có: \(\hat A = {180^o} - \left( {\hat B + \;\hat C} \right) = {180^o} - \left( {{{60}^o} + {{45}^o}} \right) = {75^o}\)

\( \Rightarrow a = \frac{b}{{\sin B}}.\sin A = \frac{{10}}{{\sin {{60}^o}}}.\sin {75^o} \approx 11,154\)

+) \((*) \Rightarrow R = \frac{b}{{2\sin B}} = \frac{{10}}{{2\sin {{60}^o}}} = \frac{{10}}{{2.\frac{{\sqrt 3 }}{2}}} = \frac{{10\sqrt 3 }}{3}.\)

+) Diện tích tam giác ABC là: \(S = \frac{1}{2}ab.\sin {\mkern 1mu} \hat C\) \( \approx \frac{1}{2}.11,154.10.\sin {45^o}\)\( \approx 39,44\)

+) Lại có: \(R = \frac{c}{{2\sin C}}\)\( \Rightarrow c = 2.\frac{{10\sqrt 3 }}{3}.\sin {45^o} = \frac{{10\sqrt 6 }}{3} \approx 8,165\)

\( \Rightarrow p = \frac{{a + b + c}}{2} \approx \frac{{11,154 + 10 + 8,165}}{2} \approx 14,66\)

\( \Rightarrow r = \frac{S}{p} \approx \frac{{39,44}}{{14,66}} \approx 2,7\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Diện tích \({S_1}\) của tam giác IAB là: \({S_1} = \frac{1}{2}r.AB = \frac{1}{2}r.c\)

Diện tích \({S_2}\) của tam giác IAC là: \({S_2} = \frac{1}{2}r.AC = \frac{1}{2}r.b\)

Diện tích \({S_3}\) của tam giác IBC là: \({S_3} = \frac{1}{2}r.BC = \frac{1}{2}r.a\)

b) Diện tích S của tam giác ABC là:

 \(\begin{array}{l}S = {S_1} + {S_2} + {S_3} = \frac{1}{2}r.c + \frac{1}{2}r.b + \frac{1}{2}r.a = \frac{1}{2}r.(c + b + a)\\ \Leftrightarrow S = \frac{{r(a + b + c)}}{2}\end{array}\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinABC\)

\(=\dfrac{1}{2}\cdot5\cdot7\cdot sin120=\dfrac{35\sqrt{3}}{4}\)

Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)

=>\(\dfrac{5^2+7^2-AC^2}{2\cdot5\cdot7}=cos120=\dfrac{-1}{2}\)

=>\(25+49-AC^2=-35\)

=>\(AC^2=25+49+35=109\)

=>\(AC=\sqrt{109}\)

Kẻ AH\(\perp\)BC

=>\(h_A=AH\)

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\)

=>\(\dfrac{1}{2}\cdot AH\cdot7=\dfrac{35\sqrt{3}}{4}\)

=>\(AH\cdot3,5=\dfrac{35\sqrt{3}}{4}\)

=>\(AH=\dfrac{10\sqrt{3}}{4}=\dfrac{5}{2}\sqrt{3}\)

Xét ΔABC có \(\dfrac{AC}{sinB}=2R\)

=>\(2R=\dfrac{\sqrt{109}}{sin120}=\sqrt{109}\cdot\dfrac{2}{\sqrt{3}}\)

=>\(R=\sqrt{\dfrac{109}{3}}=\dfrac{\sqrt{327}}{3}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Từ định lí cosin ta suy ra \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{5^2} + {8^2} - {6^2}}}{{2.5.8}} = \frac{{53}}{{80}}\)

Tam giác ABC có nửa chu vi là:\(p = \frac{{a + b + c}}{2} = \frac{{6 + 5 + 8}}{2} = 9,5.\)

Theo công thức Herong ta có: \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)}  = \sqrt {9,5.\left( {9,5 - 6} \right).\left( {9,5 - 5} \right).\left( {9,5 - 8} \right)}  \approx 14,98\)

Lại có: \(S = pr \Rightarrow r = \frac{S}{p} = \frac{{14,98}}{{9,5}} = 1,577.\)

Vậy \(\cos A = \frac{{53}}{{80}}\); \(S \approx 14,98\) và \(r = 1,577.\)

3 tháng 3 2021

60căn210

3 tháng 3 2021

Giải rõ dùm mik đi ạ

NV
20 tháng 12 2020

\(A=180-\left(B+C\right)=40^0\)

\(b=\dfrac{a}{sinA}.sinB\approx212.3\left(cm\right)\)

\(c=\dfrac{a}{sinA}.sinC=179,4\left(cm\right)\)

\(R=\dfrac{a}{2sinA}=107\left(cm\right)\)

\(S=\dfrac{abc}{4R}=12235,8\left(cm^2\right)\)