Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo định lí cosin:
\(BC^2=AB^2+AC^2-2AB.AC.cosA\)
\(\Leftrightarrow25=AB^2+36-2AB.6.cos30^o\)
\(\Leftrightarrow AB^2-AB.6\sqrt{3}+11=0\)
\(\Leftrightarrow AB=4\pm3\sqrt{3}\)
b, Theo định lí cosin:
\(AB^2=BC^2+AC^2-2BC.AC.cosC\)
\(\Leftrightarrow9=64+AC^2-16.AC.cos30^o\)
\(\Leftrightarrow AC^2-8\sqrt{3}AC+55=0\)
\(\Leftrightarrow AC^2-8\sqrt{3}AC+55=0\)
\(\Rightarrow\) vô nghiệm
\(\Rightarrow\) Không tồn tại tam giác ABC thỏa mãn
Đề có lỗi không
a: Xét ΔCAB có \(cosC=\dfrac{CA^2+CB^2-AB^2}{2\cdot CA\cdot CB}\)
=>\(\dfrac{2^2+3-AB^2}{2\cdot2\cdot\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)
=>\(7-AB^2=4\sqrt{3}\cdot\dfrac{\sqrt{3}}{2}=2\cdot3=6\)
=>AB=1
b: Xét ΔABC có \(AB^2+BC^2=CA^2\)
nên ΔABC vuông tại B
=>\(S_{BAC}=\dfrac{1}{2}\cdot BA\cdot BC=\dfrac{1}{2}\cdot1\cdot\sqrt{3}=\dfrac{\sqrt{3}}{2}\)
Độ dài đường trung tuyến kẻ từ A là:
\(m_A=\sqrt{\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}}=\sqrt{\dfrac{4+1}{2}-\dfrac{3}{4}}=\dfrac{\sqrt{7}}{2}\)
\(\overrightarrow{a}.\overrightarrow{b}=\left|\overrightarrow{a}\right|.\left|\overrightarrow{b}\right|.cos\left(\overrightarrow{a};\overrightarrow{b}\right)\)
a/ \(\overrightarrow{a}.\overrightarrow{b}=8.\sqrt{3}.cos30^0=12\)
b/ \(\overrightarrow{a}.\overrightarrow{b}=\sqrt{2}.6.cos45^0=6\)
c/ \(\overrightarrow{a}.\overrightarrow{b}=9.10.cos60^0=45\)
d/ \(\overrightarrow{a}.\overrightarrow{b}=5.6.cos120^0=-15\)
a, \(\widehat{B}\)= \(\widehat{B}=180-\widehat{A}-\widehat{C}=20\)
\(\frac{c}{sinC}=\frac{a}{sinA}\Rightarrow\frac{35}{sin110}=\frac{a}{sin50}\Rightarrow a\simeq28,53\)
\(\frac{c}{sinC}=\frac{b}{sinB}\Rightarrow\frac{35}{sin110}=\frac{b}{sin20}\Rightarrow b\simeq12,74\)