Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng của 201 số tự nhiên đã cho là : (1 + 201) x 201 : 2 = 20301
Mà 20301 : 2012 = 10 dư 181.
Vì đề yêu cầu tìm n số nên ta bớt trong dãy số đó đi số 181 để còn lại 200 số và tổng 200 số này chia hết cho 2012.
Vậy n = 200 (số)
Ta có 3n+5 chia hết cho 3n-1
=>3n-1+6 chia hết cho 3n-1
=> 6 chia hết cho 3n-1
=> 3n-1 thuộc Ư(6) và n là số tự nhiên
=> 3n-1 thuộc {1;2;3;6}
(+) 3n-1=1=> 3n=2 => n ko là số tự nhiên( loại)
(+) 3n-1=2=> 3n=3=> n=1( chọn)
(+) 3n-1=3=> 3n=4=> n ko là số tự nhiên (loại)
(+) 3n-1=6=> 3n=7=> n ko là số tự nhiên ( loại)
Vậy n=1
n = 3 nha k đi lm bn xin đóa mk nhanh mà suy nghĩ cái làm lìn
\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+....+\dfrac{3}{43.46}\)
\(=\dfrac{3}{1}-\dfrac{3}{4}+\dfrac{3}{4}-\dfrac{3}{7}+\dfrac{3}{7}-\dfrac{3}{10}+.....+\dfrac{3}{43}-\dfrac{3}{46}=3-\dfrac{3}{46}=\dfrac{135}{46}\)
Học tốt nha e
\(\dfrac{5}{2\cdot4}+\dfrac{5}{4\cdot6}+...+\dfrac{5}{48\cdot50}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{48\cdot50}\right)\)
\(=\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(=\dfrac{5}{2}\left(\dfrac{1}{2}-\dfrac{1}{50}\right)=\dfrac{5}{2}\cdot\dfrac{24}{50}=\dfrac{120}{100}=\dfrac{6}{5}\)