K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2021

\(\frac{a+b}{b^2}\sqrt{\frac{a^2b^4}{a^2+2ab+b^2}}=\frac{a+b}{b^2}\cdot\frac{\sqrt{a^2b^4}}{\sqrt{\left(a+b\right)^2}}=\frac{a+b}{b^2}\cdot\frac{ab^2}{a+b}=a\)

15 tháng 8 2021

à quên sửa chỗ này:)

\(=\frac{a+b}{b^2}\cdot\frac{\left|a\right|b^2}{a+b}=\left|a\right|\)xin lỗi nhé :v

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-x^2+x+2=0\\y=-x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-x-2=0\\y=-x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\y=-x-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(2;-4\right);\left(-1;-1\right)\right\}\)

19 tháng 2 2022

Em cảm ơn ạ (・ω・*)ー

28 tháng 8 2019
bh anh bảo nhá nhân chéo hai vế xem
28 tháng 8 2019

@hieu nguyen Em có nhân chéo hai vế và khai triển ra nhưng cũng không ra cái gì ạ. 

6 tháng 8 2017

bài nào zậy bạn

8 tháng 8 2017

Câu 3 và caau4 bài giải phương trình nhé

17 tháng 4 2017

\(\hept{\begin{cases}3x-2y=xy\\4x+y=5xy\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2y=xy\\8x+2y=10xy\end{cases}\Leftrightarrow}\hept{\begin{cases}11x=11xy\\3x-2y=xy\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=xy\\3x-2y=xy\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\3x-2=x\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\2x=2\end{cases}}}\Leftrightarrow\hept{\begin{cases}y=1\\x=1\end{cases}}\)

vậy hệ PT có nghiệm duy nhất là (x;y) =( 1;1)

19 tháng 4 2017

Thiếu nghiệm rồi bạn @Lyzimi ơi. Còn nghiệm \(\left(0;0\right)\) nữa.

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} xy+4x-5y-20=xy+x-4y-4\\ xy-3x+y-3=xy-2x-y+2\end{matrix}\right.\)

\( \Leftrightarrow \left\{\begin{matrix} 3x-y=16\\ -x+2y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{37}{5}\\ y=\frac{31}{5}\end{matrix}\right.\)

Khi đó: \(m+2n=\frac{37}{5}+2.\frac{31}{5}=\frac{99}{5}\)

NV
2 tháng 6 2021

Do AB bằng cạnh lục giác đều nội tiếp \(\Rightarrow\widehat{AOB}=\dfrac{1}{6}.360^0=60^0\)

\(\Rightarrow\Delta ABC\) đều \(\Rightarrow\left\{{}\begin{matrix}AB=OA=R\\OH=\dfrac{AB\sqrt{3}}{2}=\dfrac{R\sqrt{3}}{2}\end{matrix}\right.\)

Dây CD bằng cạnh tam giác đều nội tiếp \(\Rightarrow\widehat{COD}=\dfrac{1}{3}.360^0=120^0\Rightarrow\widehat{COK}=60^0\)

\(\Rightarrow\left\{{}\begin{matrix}CD=2CK=2OC.sin\widehat{COK}=R\sqrt{3}\\OK=OC.cos\widehat{COK}=\dfrac{R}{2}\end{matrix}\right.\)

\(\Rightarrow HK=OH-OK=\dfrac{R}{2}\left(\sqrt{3}-1\right)\)

\(S=\dfrac{1}{2}\left(AB+CD\right).HK=\dfrac{R^2}{2}\) (chắc có sự nhầm lẫn trong đáp án, không có hằng số \(\pi\) nào ở đây)