\(x^2-10x-12=4\sqrt{2x+3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

ĐK: \(2x+3\ge0\Leftrightarrow x\ge-\frac{3}{2}\)

pt <=> \(x^2-2x+1=4\left(2x+3\right)+4\sqrt{2x+3}+1\)

<=> \(\left(x-1\right)^2=\left(2\sqrt{2x+3}+1\right)^2\)

TH1: x - 1 = \(2\sqrt{2x+3}+1\)

<=> \(2\sqrt{2x+3}=x-2\)

<=> \(\hept{\begin{cases}x\ge2\\4\left(2x+3\right)=x^2-4x+4\end{cases}}\Leftrightarrow x=6+2\sqrt{11}\)

TH2: 1-x = \(2\sqrt{2x+3}+1\)

<=> \(-x=2\sqrt{2x+3}\)

<=> \(\hept{\begin{cases}x\le0\\x^2=4x+12\end{cases}}\Leftrightarrow x=-2\)không thỏa mãn ĐK

Kết luận:...

8 tháng 9 2017

a)\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|1-x\right|+\left|x-2\right|=3\)

Có: \(VT=\left|1-x\right|+\left|x-2\right|\)

\(\ge\left|1-x+x-2\right|=3=VP\)

Khi \(x=0;x=3\)

b)\(\sqrt{x^2-10x+25}=3-19x\)

\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=3-19x\)

\(\Leftrightarrow\left|x-5\right|=3-19x\)

\(\Leftrightarrow x^2-10x+25=361x^2-114x+9\)

\(\Leftrightarrow-360x^2+104x+16=0\)

\(\Leftrightarrow-5\left(5x-2\right)\left(9x+1\right)=0\)

\(\Rightarrow x=\frac{2}{5};x=-\frac{1}{9}\)

c)\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-3}}=5\)

\(\Leftrightarrow\sqrt{2x-3+2\sqrt{2x-3}+1}+\sqrt{2x-3+8\sqrt{2x-3}+16}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=5\)

\(\Leftrightarrow\left|\sqrt{2x-3}+1\right|+\left|\sqrt{2x-3}+4\right|=5\)

\(\Leftrightarrow2\sqrt{2x-3}+5=5\)\(\Leftrightarrow\sqrt{2x-3}=0\Leftrightarrow x=\frac{3}{2}\)

9 tháng 9 2017

\(\sqrt{x^2-2x+1}\) + \(\sqrt{x^2-4x+4}\) = 3

<=> \(\sqrt{\left(x-1\right)^2}\)+ \(\sqrt{\left(x-2\right)^2}\)= 3

<=> \(\left|x-1\right|\)+\(\left|x-2\right|\)=3

<=> x - 1 + x - 2 = 3

<=> 2x - 3 = 3

<=> x = \(\dfrac{6}{2}\)= 3

b ,

\(\sqrt{x^2-10x+25}=3-19x\)

<=>\(\sqrt{\left(x-5\right)^2}=3-19x\)

<=> \(\left|x-5\right|=3-19x\)

<=> \(x-5=3-19x\)

\(\Leftrightarrow x+19x=3+5\)

\(\Leftrightarrow20x=8\Leftrightarrow x=\dfrac{8}{20}=\dfrac{2}{5}\)

3 tháng 12 2016

Bài 1:

\(x^4+2x^3+10x-25=0\)

\(\Leftrightarrow x^4+2x^3-5x^2+5x^2+10x-25=0\)

\(\Leftrightarrow x^2\left(x^2+2x-5\right)+5\left(x^2+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x^2+2x-5\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5=0\\x^2+2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x^2+5>0\forall x\rightarrow Vn\\\Delta_{x^2+2x-5}=2^2-\left[-4\left(1.5\right)\right]=24\end{array}\right.\)

\(\Leftrightarrow x_{1,2}=\frac{-2\pm\sqrt{24}}{2}\)

 

3 tháng 12 2016

Bài 2:

Đặt \(\begin{cases}\sqrt{x-1}=a\left(a\ge1\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}\)(*) hệ đầu thành:

\(\begin{cases}3a+2b=13\left(1\right)\\2a-b=4\left(2\right)\end{cases}\).Từ \(\left(2\right)\Rightarrow b=2a-4\) thay vào (1) ta có:

\(\left(1\right)\Rightarrow3a+2\left(2a-4\right)=13\)

\(\Rightarrow3a+4a-8=13\Rightarrow7a=21\Rightarrow a=3\) (thỏa mãn)

\(a=3\Rightarrow b=2a-4=2\cdot3-4=2\) (thỏa mãn)

Thay \(\begin{cases}a=3\\b=2\end{cases}\) vào (*) ta có:

(*)\(\Leftrightarrow\begin{cases}\sqrt{x-1}=3\\\sqrt{y}=2\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=9\\y=4\end{cases}\)\(\Leftrightarrow\begin{cases}x=10\\y=4\end{cases}\)

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

3 tháng 10 2019

https://www.symbolab.com/

18 tháng 9 2016

ĐKXĐ : \(4\le x\le6\)

Xét vế phải \(\left(1.\sqrt{6-x}+1.\sqrt{x-4}\right)^2\le\left(1^2+1^2\right)\left(6-x+x-4\right)=4\)

\(\Leftrightarrow\sqrt{6-x}+\sqrt{x-4}\le2\)

Xét vế trái : \(x^2-10x+27=\left(x-5\right)^2+2\ge2\)

Suy ra pt tương đương với \(\hept{\begin{cases}4\le x\le6\\x^2-10x+27=2\\\sqrt{6-x}+\sqrt{x-4}=2\end{cases}}\) \(\Leftrightarrow x=5\) (thỏa mãn)

Vậy pt có nghiệm x = 5

NV
1 tháng 9 2020

c/

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=5-\left(x+1\right)^2\)

Do \(\left(x+1\right)^2\ge0\) ;\(\forall x\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{0+4}=2\\\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{0+9}=3\end{matrix}\right.\)

\(\Rightarrow VT\ge5\)

\(VP=5-\left(x+1\right)^2\le5\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)^2=0\Leftrightarrow x=-1\)

NV
1 tháng 9 2020

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{x+1}=1+\sqrt{x-2}\)

\(\Leftrightarrow x+1=1+x-2+2\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{x-2}=1\)

\(\Leftrightarrow x=3\)

b/ ĐKXĐ: \(x^2\ge2\)

Đặt \(\sqrt{x^2-2}=t\ge0\Rightarrow x^2=t^2+2\)

Pt trở thành: \(t^2+2-t=4\)

\(\Leftrightarrow t^2-t-2=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-2}=2\Leftrightarrow x^2=6\Rightarrow x=\pm\sqrt{6}\)

24 tháng 8 2020

\(\sqrt{4x^2-4x+1}=\sqrt{x^2+10x+25}\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=\sqrt{\left(x+5\right)^2}\)

\(\Leftrightarrow\left|2x-1\right|=\left|x+5\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+5\\2x-1=-\left(x+5\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=x+5\\2x-1=-x-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-\frac{4}{3}\end{cases}}\)

24 tháng 8 2020

a) 

\(\sqrt{x+3}+2\sqrt{4\left(x+3\right)}-\frac{1}{3}\sqrt{9\left(x+3\right)}=8\)  

\(\sqrt{x+3}+2\cdot2\sqrt{x+3}-\frac{1}{3}\cdot3\sqrt{x+3}=8\)    

\(\sqrt{x+3}+4\sqrt{x+3}-\sqrt{x+3}=8\)    

\(4\sqrt{x+3}=8\)          

\(\sqrt{x+3}=2\) 

\(\orbr{\begin{cases}2\ge0\left(llđ\right)\\x+3=2^2\end{cases}}\) 

\(x+3=4\) 

\(x=1\) 

b) 

\(\orbr{\begin{cases}x^2+10x+25\ge0\\4x^2-4x+1=x^2+10x+25\end{cases}}\) 

\(\orbr{\begin{cases}\left(x+5\right)^2\ge0\left(lld\right)\\3x^2-6x-24=0\end{cases}}\) 

\(\orbr{\begin{cases}x=6\\x=-\frac{4}{3}\end{cases}}\)