Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pro kinh không thể lướt qua
Giao luu: x=3
có thể quy đồng làm bt; \(!vt!\ge!vp!\)
\(x^2-4=2\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow x^2-4=2\left(x^2+3x-2x-6\right)\)
\(\Leftrightarrow x^2-4=2x^2+2x-12\)
\(\Leftrightarrow x^2-2x^2-2x=-12+4\)
\(\Leftrightarrow-x^2-2x=-8\)
\(\Leftrightarrow-x^2-2x+8=0\)
\(\Leftrightarrow-x^2+2x-4x+8=0\)
\(\Leftrightarrow-x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(-x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x-4=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-4;2\right\}\)
\(x^2-4=2\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=2\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)-2\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x+2\right)-2\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-2x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
\(1,x^2+2xy+x+2y\)
\(=\left(x^2+2xy\right)+\left(x+2y\right)\)
\(=x\left(x+2y\right)+\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x+1\right)\)
\(2,x^2-10x+25\)
\(=x^2-2.x.5+5^2\)
\(=\left(x-5\right)^2\)
Đợi mk chút ,mk có việc bận ,tối mk làm tiếp nha bn
\(3,x^3+3x^2+3x+1\)
\(=\left(x^3+1\right)+\left(3x^2+3x\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+3x\right)\)
\(=\left(x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x+1\right)\left(x+1\right)^2\)
\(=\left(x+1\right)^3\)
\(4,x^3-8\)
\(=x^3-2^3\)
\(=\left(x-2\right)\left(x^2+2x+4\right)\)
\(5,x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
\(6,x^3-\dfrac{1}{8}\)
\(=x^3-\left(\dfrac{1}{2}\right)^3\)
\(=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
\(7,x^3-x+y^3-y\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
\(8,4x^2-1\)
\(=\left(2x\right)^2-1^2\)
\(=\left(2x-1\right)\left(2x+1\right)\)
\(9,49x^2-9\)
\(=\left(7x\right)^2-3^2\)
\(=\left(7x-3\right)\left(7x+3\right)\)
a, \(2x-\frac{1}{2}=\frac{2x+1}{4}-\frac{1-2x}{8}\)
\(\Leftrightarrow\frac{1}{2}\left(4x-1\right)=\frac{1}{8}\left(6x+1\right)\)
\(\Leftrightarrow4\left(4x-1\right)=6x+1\)
\(\Leftrightarrow10x=5\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
b, \(\frac{x-3}{13}+\frac{x-3}{14}=\frac{x-3}{15}+\frac{x-3}{16}\)
\(\Leftrightarrow\frac{x-3}{13}+\frac{x-3}{14}-\frac{x-3}{15}-\frac{x-3}{16}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy x = 3
\(\frac{x-3}{13}+\frac{x-3}{14}=\frac{x-3}{15}+\frac{x-3}{16}\)
\(\Leftrightarrow\frac{x-3}{13}+\frac{x-3}{14}-\frac{x-3}{15}-\frac{x-3}{16}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{13}+\frac{1}{14}-\frac{1}{15}-\frac{1}{16}\right)=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=0+3\)
\(\Leftrightarrow x=3\)
Áp dụng : (A + B)3 = A3 + 3A2B + 3AB2 + B3
11) \(\left(x^2+\frac{3}{xy}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{3}{xy}+3\cdot x^2\cdot\left(\frac{3}{xy}\right)^2+\left(\frac{3}{xy}\right)^3\)
\(=x^6+3\cdot x^4\cdot\frac{3}{xy}+3\cdot x^2\cdot\frac{9}{x^2y^2}+\frac{27}{x^3y^3}\)
\(=x^6+\frac{9x^4}{xy}+\frac{27\cdot x^2}{x^2y^2}+\frac{27}{x^3y^3}\)
\(=x^6+\frac{9x^3}{y}+\frac{27}{y^2}+\frac{27}{x^3y^3}\)
12) \(\left(x^2+\frac{2}{x}\right)^3=\left(x^2\right)^3+3\cdot\left(x^2\right)^2\cdot\frac{2}{x}+3\cdot x^2\cdot\left(\frac{2}{x}\right)^2+\left(\frac{2}{x}\right)^3\)
\(=x^6+3\cdot x^4\cdot\frac{2}{x}+3\cdot x^2\cdot\frac{4}{x^2}+\frac{8}{x^3}\)
\(=x^6+\frac{6\cdot x^4}{x}+\frac{12\cdot x^2}{x^2}+\frac{8}{x^3}\)
\(=x^6+6x^3+12+8x^3\)
13) \(\left(3y+\frac{x}{2}\right)^3=\left(3y\right)^3+3\cdot3y^2\cdot\frac{x}{2}+3\cdot3y+\left(\frac{x}{2}\right)^2+\left(\frac{x}{2}\right)^3\)
\(=27y^3+\frac{9y^2\cdot x}{2}+9y+\frac{x^2}{4}+\frac{x^3}{8}\)
14) \(\left(1\frac{1}{2}xy+1\right)^3=\left(\frac{3}{2}xy+1\right)^3=\left(\frac{3}{2}xy\right)^3+3\cdot\left(\frac{3}{2}xy\right)^2\cdot1+3\cdot\frac{3}{2}xy\cdot1^2+1^3\)
\(=\frac{27}{8}x^3y^3+3\cdot\frac{9}{4}x^2y^2+\frac{9}{2}xy+1\)
\(=\frac{27}{8}x^3y^3+\frac{27}{4}x^2y^2+\frac{9}{2}xy+1\)
15) \(\left(\frac{x^2}{2}+\frac{2}{y}\right)^3=\left(\frac{x^2}{2}\right)^3+3\cdot\left(\frac{x^2}{2}\right)^2\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\left(\frac{2}{y}\right)^2+\left(\frac{2}{y}\right)^3\)
\(=\frac{x^6}{8}+3\cdot\frac{x^4}{4}\cdot\frac{2}{y}+3\cdot\frac{x^2}{2}\cdot\frac{4}{y^2}+\frac{8}{y^3}\)
\(=\frac{x^6}{8}+\frac{3x^4}{2y}+\frac{6x^2}{y^2}+\frac{8}{y^3}\)
Còn 5 bài cuối áp dụng tương tự như thế :)
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
Phương trình 1:
\(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
\(\Rightarrow\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}-10=0\)
\(\Rightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-4\right)=0\)
\(\Rightarrow\frac{x-85-15}{15}+\frac{x-74-26}{13}+\frac{x-67-33}{11}+\frac{x-64-36}{9}=0\)
\(\Rightarrow\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Do \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x = 100.
Phương trình 3:
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4=0\)
\(\Rightarrow\left(\frac{1909-x}{91}+1\right)+\left(\frac{1907-x}{93}+1\right)+\left(\frac{1905-x}{95}+1\right)+\left(\frac{1903-x}{97}+1\right)=0\)
\(\Rightarrow\frac{1909-x+91}{91}+\frac{1907-x+93}{93}+\frac{1905-x+95}{95}+\frac{1903-x+97}{97}=0\)
\(\Rightarrow\frac{2000-x}{91}+\frac{2000-x}{93}+\frac{2000-x}{95}+\frac{2000-x}{97}=0\)
\(\Rightarrow\left(2000-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
Do \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
\(\Rightarrow2000-x=0\)
\(\Rightarrow x=2000\)
Vậy x = 2000.
:))) khó quá
x-3/13+x-3/14=x-3/15+x-3/16
<=> x-3/13+x-3/14-x-3/15-x-3/16=0
<=> (x-3).(1/13+1/14-1/15-1/16)
<=> (x-3)=0 ( Vì 1/13+1/14-1/15-1/16>0)
<=> x-3=0 => x=3
Vậy x=3