Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`ĐK:x>=2`
`pt<=>sqrt{(x-1)(x-2)}+sqrt{x+3}=sqrt{x-2}+sqrt{(x-1)(x+3)}`
`<=>sqrt{x-1}(sqrt{x-2}-sqrt{x+3})-(sqrt{x-2}-sqrt{x+3})=0`
`<=>(sqrt{x-2}-sqrt{x+3})(sqrt{x-1}-1)=0`
`+)sqrt{x-2}=sqrt{x+3}`
`<=>x-2=x+3`
`<=>0=5` vô lý
`+)sqrt{x-1}-1=0`
`<=>x-1=1`
`<=>x=2(tm)`.
Vậy `x=2`.
Sửa lại đề bài cho mk là: \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
Đk:\(x\ge-1\)
Đặt \(\left(a,b,c\right)=\left(x;\sqrt{x+1};\sqrt{2}\right)\)
Pt tt: \(a^3+b^3+c^3=\left(a+b+c\right)^3\)
\(\Leftrightarrow a^3+b^3+c^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(\Leftrightarrow0=3ab\left(a+b\right)+3\left(a+b\right)^2c+3\left(a+b\right)c^2\)
\(\Leftrightarrow3\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)
\(\Leftrightarrow3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\a+c=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{x+1}=0\\\sqrt{x+1}+\sqrt{2}=0\left(vn\right)\\x+\sqrt{2}=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x+1}=-x\\x=-\sqrt{2}\left(ktm\right)\end{matrix}\right.\)\(\Rightarrow\)\(\sqrt{x+1}=-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le0\\x+1=x^2\end{matrix}\right.\)\(\Rightarrow x=\dfrac{1-\sqrt{5}}{2}\) (tm)
Vậy...
\(ĐK:0\le x\le3\\ PT\Leftrightarrow x^2-3x+1=-\left(x-2-\sqrt{3-x}\right)-\left(x-1-\sqrt{x}\right)\\ \Leftrightarrow x^2-3x+1+\dfrac{x^2-3x+1}{x-2+\sqrt{3-x}}+\dfrac{x^2-3x+1}{x-1+\sqrt{x}}=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+1=0\\1+\dfrac{1}{x-2+\sqrt{3-x}}+\dfrac{1}{x-1+\sqrt{x}}=0\left(1\right)\end{matrix}\right.\)
Với \(0\le x\le3\Leftrightarrow\dfrac{1}{x-2+\sqrt{3-x}}\ge\dfrac{1}{3-2+\sqrt{3-0}}>0;\dfrac{1}{x-1+\sqrt{x}}\ge\dfrac{1}{3-1+\sqrt{3}}>0\)
\(\Leftrightarrow\left(1\right)>0\left(vn\right)\\ \Leftrightarrow x^2-3x+1=0\)
1. đk: pt luôn xác định với mọi x
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)
Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!
2. đk: \(x\geq 1\)
\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)
Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!
ĐKXĐ : \(\left\{{}\begin{matrix}x^2-x\ge0\\3-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\\x\le3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)
- PT \(\Leftrightarrow x^2-x=3-x\)
\(\Leftrightarrow x^2=3\)
\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )
Vậy ...
tại sao x ≤ 0 ?????