Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Đk: x khác -3
x khác 1
Biểu thức \(\Leftrightarrow\dfrac{x^2-x}{x^2+2x-3}+\dfrac{2x+6}{x^2+2x-3}=\dfrac{12}{x^2+2x-3}\)
\(\Leftrightarrow x^2-x+2x+6=12\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
kl: x thuộc {-3;2}
a/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge-1\\x\le-5\end{matrix}\right.\)
Bình phương 2 vế:
\(x^2+3x+2+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}+x^2+6x+5=2x^2+9x+7\)
\(\Leftrightarrow2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3x+2=0\\x^2+6x+5=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)
Vậy pt có 2 nghiệm \(x=-1;x=-5\)
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=a>0\Rightarrow a^2-6=3x+2\sqrt{2x^2+5x+3}-2\)
Phương trình trở thành:
\(a=a^2-6\Leftrightarrow a^2-a-6=0\Rightarrow\left[{}\begin{matrix}a=-2\left(l\right)\\a=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-3x\ge0\\4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{5}{3}\\x^2-50x+13=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=25+6\sqrt{17}\left(l\right)\\x=25-6\sqrt{17}\end{matrix}\right.\)
Vậy pt có nghiệm duy nhất \(x=25-6\sqrt{17}\)
a) \(\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}=\sqrt{\left(x+1\right)\left(2x+7\right)}\)
\(ĐK\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge-2\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x+1\right)\left(x+5\right)}-\sqrt{\left(x+1\right)\left(2x+7\right)}=0\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}\left(\sqrt{x+2}+\sqrt{x+5}-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\sqrt{x+2}+\sqrt{x+5}=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x+2+x+5+2\sqrt{\left(x+2\right)\left(x+5\right)}=2x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\2\sqrt{\left(x+2\right)\left(x+5\right)}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=-5\end{matrix}\right.\)
vậy \(S=\left\{-1;-2;-5\right\}\)
a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)
\(pt\Leftrightarrow\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}=-x^2-2x+4\)
\(\Leftrightarrow\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-x^2-2x+4\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-x^2-2x+4\)
Dễ thấy: \(\hept{\begin{cases}3\left(x+1\right)^2\ge0\\5\left(x+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(x+1\right)^2+4\ge4\\5\left(x+1\right)^2+9\ge9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{3\left(x+1\right)^2+4}\ge2\\\sqrt{5\left(x+1\right)^2+9}\ge3\end{cases}}\)
\(\Rightarrow VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\)
Và \(VP=-x^2-2x+4=-x^2-2x-1+5\)
\(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\)
SUy ra \(VT\ge VP=5\Leftrightarrow x=-1\)
b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2-\sqrt{x-1}=1\)
..... giải nốt tiếp ra x=1
c)Sửa đề \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
ĐK:....
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{x-7}+\sqrt{9-x}\right)^2\)
\(\le\left(1+1\right)\left(x-7+9-x\right)=4\)
\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)
Lại có: \(VP=x^2-16x+66=x^2-16x+64+2\)
\(=\left(x-8\right)^2+2\ge2\)
Suy ra \(VT\ge VP=2\) khi \(VT=VP=2\)
\(\Rightarrow\left(x-8\right)^2+2=2\Rightarrow x-8=0\Rightarrow x=8\)
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
đặt \(x^2+2x=a\) , thay vào pt ta được:
\(\sqrt{3a+16}+\sqrt{a}=2\sqrt{a+4}\)
\(\Leftrightarrow\left(\sqrt{3a+16}\right)^2=\left(2\sqrt{a+4}-\sqrt{a}\right)^2\)
\(\Leftrightarrow3a+16=4a+16-4\sqrt{a\left(a+4\right)}+a\)
\(\Leftrightarrow\left(4\sqrt{a^2+4a}\right)^2=\left(2a\right)^2\)
\(\Leftrightarrow16a^2+64a=4a^2\)
\(\Leftrightarrow12a^2+64a=0\Leftrightarrow\orbr{\begin{cases}a=0\\a=-\frac{16}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2x=0\\x^2+2x=-\frac{16}{3}\end{cases}}\)
Tự giải tiếp nhá
bạn đặt điều kiện cho a là \(a\ge-4\) rồi loại trường hợp \(a=\frac{-16}{3}\)