Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/
\(\Leftrightarrow\sqrt{2}sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{\sqrt{2}}\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\left[{}\begin{matrix}3x-\frac{\pi}{4}=\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{4}=\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{7\pi}{36}+\frac{k2\pi}{3}\\x=\frac{11\pi}{36}+\frac{k2\pi}{3}\end{matrix}\right.\)
d/
\(\Leftrightarrow2sinx.cosx+1-2sin^2x=1\)
\(\Leftrightarrow2sinx\left(cosx-sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=cosx\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
a/
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin5x-\frac{1}{2}cos5x=-1\)
\(\Leftrightarrow sin\left(5x-\frac{\pi}{6}\right)=-1\)
\(\Leftrightarrow5x-\frac{\pi}{6}=-\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\frac{\pi}{15}+\frac{k2\pi}{5}\)
b/
\(\Leftrightarrow\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=\frac{1}{2}\)
\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\\x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow\sqrt{3}sin3x-cos3x=sin2x-\sqrt{3}cos2x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(2x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=2x-\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\pi-2x+\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+k2\pi\\x=\frac{3\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
e/
\(\Leftrightarrow\frac{1}{2}sin8x-\frac{\sqrt{3}}{2}cos8x=\frac{\sqrt{3}}{2}sin6x+\frac{1}{2}cos6x\)
\(\Leftrightarrow sin\left(8x-\frac{\pi}{3}\right)=sin\left(6x+\frac{\pi}{6}\right)\)
\(\Rightarrow\left[{}\begin{matrix}8x-\frac{\pi}{3}=6x+\frac{\pi}{6}+k2\pi\\8x-\frac{\pi}{3}=\pi-6x-\frac{\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{28}+\frac{k\pi}{7}\end{matrix}\right.\)
\(\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x+sin\frac{9x}{4}=2\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)+sin\left(\frac{9x}{4}\right)=2\)
Do \(\left\{{}\begin{matrix}sin\left(3x-\frac{\pi}{6}\right)\le1\\sin\left(\frac{9x}{4}\right)\le1\end{matrix}\right.\)
Nên đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}sin\left(3x-\frac{\pi}{6}\right)=1\\sin\left(\frac{9x}{4}\right)=1\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2\pi}{9}+\frac{k8\pi}{3}\)
c/
\(\Leftrightarrow\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx=cos3x\)
\(\Leftrightarrow cos\left(x+\frac{\pi}{3}\right)=cos3x\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=3x+k2\pi\\x+\frac{\pi}{3}=-3x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k\pi\\x=\frac{\pi}{12}+\frac{k\pi}{2}\end{matrix}\right.\)
d/
\(\Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=sin2x\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{3}\right)=sin2x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{3}=2x+k2\pi\\3x-\frac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{15}+\frac{k2\pi}{5}\end{matrix}\right.\)
a/
\(\Leftrightarrow\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{6}\right)\)
\(\Rightarrow x+\frac{\pi}{3}=\pi-x-\frac{\pi}{6}+k2\pi\)
\(\Rightarrow x=\frac{\pi}{4}+k\pi\)
b/
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=sin\frac{\pi}{12}\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=sin\frac{\pi}{12}\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\frac{\pi}{12}+k2\pi\\x+\frac{\pi}{6}=\frac{11\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{12}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
a) cosx - √3sinx = √2 ⇔ cosx - tansinx = √2
⇔ coscosx - sinsinx = √2cos ⇔ cos(x + ) =
⇔
b) 3sin3x - 4cos3x = 5 ⇔ sin3x - cos3x = 1.
Đặt α = arccos thì phương trình trở thành
cosαsin3x - sinαcos3x = 1 ⇔ sin(3x - α) = 1 ⇔ 3x - α = + k2π
⇔ x = , k ∈ Z (trong đó α = arccos).
\(sin3x-sinx+sin2x=0\)
\(\Leftrightarrow2cos2x.sinx+2sinx.cosx=0\)
\(\Leftrightarrow sinx\left(cos2x+cosx\right)=0\)
\(\Leftrightarrow2sinx.cos\frac{3x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=0\\cos\frac{x}{2}=0\\cos\frac{3x}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{3x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\pi+k2\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)
\(cosx+cos3x+cos2x+cos4x=0\)
\(\Leftrightarrow2cos2x.cosx+2cos3x.cosx=0\)
\(\Leftrightarrow cosx\left(cos2x+cos3x\right)=0\)
\(\Leftrightarrow2cosx.cos\frac{5x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=0\\cos\frac{x}{2}=0\\cos\frac{5x}{2}=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\\frac{x}{2}=\frac{\pi}{2}+k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\frac{\pi}{5}+\frac{k2\pi}{5}\end{matrix}\right.\)
1.
\(\Leftrightarrow cos3x=-\frac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=40^0+k120^0\\x=-40^0+k120^0\end{matrix}\right.\)
\(\Rightarrow x=\left\{40^0;160^0;80^0\right\}\)
2.
Bạn coi lại đề, số \(-\sqrt{3}\) bên vế trái ko hề hợp lý, toán cho cấp 1 như vầy còn được chứ cấp 3 chắc ko ai cho đề kiểu vậy đâu
3.
\(\Leftrightarrow\sqrt{3}sin3x-cos3x=-sin5x-\sqrt{3}cos5x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=-\left(\frac{1}{2}sin5x+\frac{\sqrt{3}}{2}cos5x\right)\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin\left(-5x-\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=-5x-\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{6}=\frac{4\pi}{3}+5x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{48}+\frac{k\pi}{4}\\x=-\frac{7\pi}{12}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{3}sin3x-cos3x=2sin2x\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin3x-\frac{1}{2}cos3x=sin2x\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{6}\right)=sin2x\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{6}=2x+k2\pi\\3x-\frac{\pi}{6}=\pi-2x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{7\pi}{30}+\frac{k2\pi}{5}\end{matrix}\right.\)