Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
a) ĐKXĐ: \(-1\leq x\leq 2\)
\(\sqrt{(1+x)(2-x)}=1+2x-2x^2\)
\(\Leftrightarrow \sqrt{2+x-x^2}=1+2x-2x^2=-3+2(2+x-x^2)\)
Đặt \(\sqrt{2+x-x^2}=t(t\geq 0)\). PT trở thành:
\(t=-3+2t^2\)
\(\Leftrightarrow 2t^2-t-3=0\Leftrightarrow (2t-3)(t+1)=0\)
\(\Rightarrow t=\frac{3}{2}\) (do \(t\geq 0)\)
\(\Rightarrow 2+x-x^2=\frac{9}{4}\Rightarrow x^2-x+\frac{1}{4}=0\)
\(\Leftrightarrow (x-\frac{1}{2})^2=0\Rightarrow x=\frac{1}{2}\) (thỏa mãn)
b) ĐK: \(x\geq \frac{1}{3}\)
PT \(\Leftrightarrow \sqrt{(3x-1)+6\sqrt{3x-1}+9}+\sqrt{(3x-1)-6\sqrt{3x-1}+9}=3x+4\)
\(\Leftrightarrow \sqrt{(\sqrt{3x-1}+3)^2}+\sqrt{(\sqrt{3x-1}-3)^2}=3x+4\)
\(\Leftrightarrow \sqrt{3x-1}+3+|\sqrt{3x-1}-3|=3x+4\)
\(\Leftrightarrow |\sqrt{3x-1}-3|=3x-\sqrt{3x-1}+1\)
Nếu \(\sqrt{3x-1}\geq 3\):
\(\Rightarrow \sqrt{3x-1}-3=3x-\sqrt{3x-1}+1\)
\(\Leftrightarrow 3x+4-2\sqrt{3x-1}=0\)
\(\Leftrightarrow (3x-1)-2\sqrt{3x-1}+5=0\)
\(\Leftrightarrow (\sqrt{3x-1}-1)^2+4=0\) (vô lý)
Nếu \(\sqrt{3x-1}< 3\):
\(\Rightarrow 3-\sqrt{3x-1}=3x-\sqrt{3x-1}+1\)
\(\Leftrightarrow 3x=2\Rightarrow x=\frac{2}{3}\) (thỏa mãn)
Vậy...........
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....