Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x=2y\\4x-3y=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2y\\8y-3y=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-10\\y=-5\end{matrix}\right.\)
Gọi cạnh lớn hơn trong hai cạnh còn lại là a (a > 2)
Cạnh bé hơn trong hai cạnh còn lại là b (b > 0)
Tổng hai cạnh còn lại này là \(48-20=28\left(cm\right)\)
Theo đề bài, ta có hệ phương trình:
\(\hept{\begin{cases}a+b=28\\a-b=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=15\\b=13\end{cases}}\)
Vậy độ dài hai cạnh còn lại lần lượt dài \(15cm\) và \(13cm\)
sao vậy bạn, bài cơ bản ráng làm đi, tui nghĩ bạn mất căn bản toán r, lên 10 mà z thì chạy hổng kịp đâu
Bài 4:
\(x^4y-x^4+2x^3-2x^2+2x-y=1\)
\(\Leftrightarrow y(x^4-1)-(x^4-2x^3+2x^2-2x+1)=0\)
\(\Leftrightarrow y(x^2+1)(x^2-1)-[x^2(x^2-2x+1)+(x^2-2x+1)]=0\)
\(\Leftrightarrow y(x^2+1)(x-1)(x+1)-(x-1)^2(x^2+1)=0\)
\(\Leftrightarrow (x^2+1)(x-1)[y(x+1)-(x-1)]=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0(1)\\ y(x+1)-(x-1)=0(2)\end{matrix}\right.\)
Với $(1)$ ta thu được $x=1$, và mọi $ý$ nguyên.
Với $(2)$
\(y(x+1)=x-1\Rightarrow y=\frac{x-1}{x+1}\in\mathbb{Z}\)
\(\Rightarrow x-1\vdots x+1\)
\(\Rightarrow x+1-2\vdots x+1\Rightarrow 2\vdots x+1\)
\(\Rightarrow x+1\in\left\{\pm 1; \pm 2\right\}\Rightarrow x\in\left\{-2; 0; -3; 1\right\}\)
\(\Rightarrow y\left\{3;-1; 2; 0\right\}\)
Vậy \((x,y)=(-2,3); (0; -1); (-3; 2); (1; t)\) với $t$ nào đó nguyên.
Bài 1:
\(x^2+y^2-8x+3y=-18\)
\(\Leftrightarrow x^2+y^2-8x+3y+18=0\)
\(\Leftrightarrow (x^2-8x+16)+(y^2+3y+\frac{9}{4})=\frac{1}{4}\)
\(\Leftrightarrow (x-4)^2+(y+\frac{3}{2})^2=\frac{1}{4}\)
\(\Rightarrow (x-4)^2=\frac{1}{4}-(y+\frac{3}{2})^2\leq \frac{1}{4}<1\)
\(\Rightarrow -1< x-4< 1\Rightarrow 3< x< 5\)
Vì \(x\in\mathbb{Z}\Rightarrow x=4\)
Thay vào pt ban đầu ta thu được \(y=-1\) or \(y=-2\)
Vậy.......
\(\left\{{}\begin{matrix}0,5x-1,5y=1\\-x+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-3y=2\\-x+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\-\left(3y+2\right)+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\-3y-2+3y=2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\-2=2\end{matrix}\right.\)
=> Hpt vô nghiệm
0,5x - 1,5y = 1 (1)
-x + 3y = 2 (2)
Từ (2) ta có:
x = 3y - 2 (3)
Thế (3) vào (1), ta có:
0,5(3y - 2) - 1,5y = 1
1,5y - 1 - 1,5y = 1
0y = 1 + 1
0y = 2 (vô lý)
Vậy