Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
\(a.\sqrt[3]{2x-1}=3\)
\(\Leftrightarrow2x-1=27\)
\(\Leftrightarrow x=14\)
\(b.\sqrt[3]{x-5}=0,9\)
\(\Leftrightarrow x-5=0,729\)
\(\Leftrightarrow x=5,729\)
\(c.\sqrt[3]{x^2-2x+28}=3\)
\(\Leftrightarrow x^2-2x+28=27\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
d, Ta có: \(\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)^3=5^3\)
\(\Leftrightarrow8x^2-27x-3.2.3\sqrt[3]{x^2.x}.\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)=125\)
Vì \(2\sqrt[3]{x^2}-3\sqrt[3]{x}=5\)
\(\Rightarrow8x^2-27x-18.x.5=125\)
\(\Leftrightarrow8x^2-117x-125=0\)
\(\Leftrightarrow8x^2+8x-125x-125=0\)
\(\Leftrightarrow\left(x+1\right)\left(8x-125\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)
a) Do VT >=0 nên VP >=0 nên \(x\ge4\)
\(PT\Leftrightarrow\left(x-2\right)-\sqrt{x-2}-2=0\)
Đặt \(\sqrt{x-2}=t\ge\sqrt{4-2}=\sqrt{2}\) thì \(t^2-t-2=0\)
\(\Leftrightarrow t=2\left(loại t = -1 vì nó không thỏa mãn đk\right)\Leftrightarrow x-2=4\Leftrightarrow x=6\)
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
a) ĐK: \(x\ge -1\)
Ta có: \(x^2+\sqrt{x+1}=1\)
\(\Leftrightarrow (x^2-1)+\sqrt{x+1}=0\)
\(\Leftrightarrow (x-1)(x+1)+\sqrt{x+1}=0\)
\(\Leftrightarrow \sqrt{x+1}[(x-1)\sqrt{x+1}+1]=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x+1}=0(1)\\ (x-1)\sqrt{x+1}+1=0(2)\end{matrix}\right.\)
Với \((1)\Rightarrow x+1=0\Rightarrow x=-1\) (thỏa mãn)
Với \((2)\Rightarrow x\sqrt{x+1}-(\sqrt{x+1}-1)=0\)
\(\Leftrightarrow x\sqrt{x+1}-\frac{x}{\sqrt{x+1}+1}=0\)
\(\Leftrightarrow x\left(\sqrt{x+1}-\frac{1}{\sqrt{x+1}+1}\right)=0\)
\(\Leftrightarrow x.\frac{x+1+\sqrt{x+1}-1}{\sqrt{x+1}+1}=0\)
\(\Leftrightarrow x.\frac{x+\sqrt{x+1}}{\sqrt{x+1}+1}=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x+\sqrt{x+1}=0\end{matrix}\right.\)
Với \(x+\sqrt{x+1}=0\Rightarrow x=-\sqrt{x+1}\Rightarrow \left\{\begin{matrix} x\leq 0\\ x^2=x+1\end{matrix}\right.\Rightarrow x=\frac{1-\sqrt{5}}{2}\)
Vậy \(x=\left\{-1; \frac{1-\sqrt{5}}{2}; 0\right\}\)
b) ĐK: \(-3\leq x\leq 6\)
Ta có: \((\sqrt{3+x}+\sqrt{6-x})^2=3+x+6-x+2\sqrt{(3+x)(6-x)}\)
\(=9+2\sqrt{(3+x)(6-x)}\geq 9\)
\(\Rightarrow \sqrt{3+x}+\sqrt{6-x}\geq 3\) do \(\sqrt{3+x}+\sqrt{6-x}\) không âm.
Dấu "=" xảy ra khi \(\sqrt{(3+x)(6-x)}=0\Leftrightarrow x=-3; x=6\)
Vậy \(x=-3\) or $x=6$
Bài 1:
a/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{2x-1}-3=0\)
\(\Leftrightarrow\frac{x-5}{\sqrt{x-1}+2}+\frac{2\left(x-5\right)}{\sqrt{2x-1}+3}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{x-1}+2}+\frac{2}{\sqrt{2x-1}+3}\right)=0\)
\(\Rightarrow x=5\)
b/ĐKXĐ:...
\(x-1+\sqrt{2x-1}-1=0\)
\(\Leftrightarrow x-1+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
\(\Rightarrow x=1\)
Bài 2:
\(A=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\)
\(=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)
\(B=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left(3-\sqrt{6}\right)+\left(2\sqrt{6}-3\right)\)
\(=\sqrt{6}\)
\(C=\left(\frac{3+\sqrt{5}-3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right).\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}\left(\sqrt{5}-1\right)}\)
\(=\frac{2\sqrt{5}}{4}.\frac{1}{\sqrt{5}}=\frac{1}{2}\)
Bạn coi lại đề câu a và câu c
b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)
Phương trình trở thhành:
\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)
\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)
\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))
\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)
\(\Leftrightarrow x^2=16\Rightarrow x=4\)
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking
Giúp mk vs!
5/
Đặt \(\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=a\ge0\\\sqrt{\frac{6}{x}-2x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=\frac{3}{x}\)
Pt trở thành:
\(a-1=\frac{a^2+b^2}{2}-b\)
\(\Leftrightarrow a^2+b^2-2a-2b+2=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=1\\\sqrt{\frac{6}{x}-2x}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-x-3=0\\2x^2+x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{3}{2}\)
4/
ĐKXĐ: \(x\ge\frac{1}{5}\)
\(\Leftrightarrow\frac{4x-3}{\sqrt{5x-1}+\sqrt{x+2}}=\frac{4x-3}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\Rightarrow x=\frac{3}{4}\\\sqrt{5x-1}+\sqrt{x+2}=5\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{5x-1}-3+\sqrt{x+2}-2=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-1}+3}+\frac{x-2}{\sqrt{x+2}+2}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-1}+3}+\frac{1}{\sqrt{x+2}+2}\right)=0\)
\(\Leftrightarrow x=2\)
a) \(\sqrt{2x+5}=\sqrt{1-x}\left(ĐK:x\le1\right)\)
\(\Leftrightarrow2x+5=1-x\)
\(\Leftrightarrow3x=-4\Leftrightarrow x=-\frac{4}{3}\)( nhận )
b) \(\sqrt{x^2-x}=\sqrt{3-x}\left(ĐK:x\le3\right)\)
\(\Leftrightarrow x^2-x=3-x\)
\(\Leftrightarrow x^2-3=0\Leftrightarrow x=\left[{}\begin{matrix}\sqrt{3}\\-\sqrt{3}\end{matrix}\right.\) ( nhận )
c) \(\sqrt{x^2-x-6}=\sqrt{x-3}\left(ĐK:x\ge3\right)\)
\(\Leftrightarrow x^2-x-6=x-3\)
\(\Leftrightarrow x^2-x-6-x+3=0\)
\(\Leftrightarrow x^2-2x-3=0\)
Tới đây ta thấy a-b+c=0 ( nhẩm nghiệm )
\(\Rightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=3\left(n\right)\end{matrix}\right.\) ( l: loại ; n: nhận )
$a) \sqrt{x - 3} = 5$
$\Leftrightarrow x - 3 = 25$
$\Leftrightarrow x = 25 + 3$
$\Leftrightarrow x = 28$
Vậy tập nghiệm của phương trình: $S = {28}$
$b) \sqrt{2x + 1} = 3$
$\Leftrightarrow 2x + 1 = 9$
$\Leftrightarrow 2x = 9 - 1$
$\Leftrightarrow 2x = 8$
$\Leftrightarrow x = \frac{8}{2}$
$\Leftrightarrow x = 4$
Vậy tập nghiệm của phương trình: $S = {4}$
$a) \sqrt{x - 3} = 5$
$\Leftrightarrow x - 3 = 25$
$\Leftrightarrow x = 25 + 3$
$\Leftrightarrow x = 28$
Vậy tập nghiệm của phương trình: S={28}
$b) \sqrt{2x + 1} = 3$
$\Leftrightarrow 2x + 1 = 9$
$\Leftrightarrow 2x = 9 - 1$
$\Leftrightarrow 2x = 8$
$\Leftrightarrow x = \frac{8}{2}$
$\Leftrightarrow x = 4$
Vậy tập nghiệm của phương trình: S={4}