\(\frac{3x}{x-2}\)-\(\frac{x}{x-5}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

ĐKXĐ:\(\left\{{}\begin{matrix}x-2\ne0\\x-5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne2\\x\ne5\end{matrix}\right.\)

\(\frac{3x}{x-2}-\frac{x}{x-5}=\frac{3x}{\left(x-2\right)\left(5-x\right)}\)

\(\frac{3x\left(5-x\right)}{\left(x-2\right)\left(5-x\right)}+\frac{x\left(x-2\right)}{\left(x-2\right)\left(5-x\right)}-\frac{3x}{\left(x-2\right)\left(5-x\right)}=0\)

\(15x-3x^2+x^2-2x-3x=0\)

\(10x-2x^2=0\)

\(2x.\left(5-x\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x=0\\5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\left(chọn\right)\\x=5\left(loại\right)\end{matrix}\right.\)

11 tháng 3 2020
https://i.imgur.com/otZUeyo.jpg
11 tháng 3 2020
https://i.imgur.com/75x7lYS.jpg
11 tháng 3 2020

THANK YOU VERY MUCH

11 tháng 3 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x-1\ne0\\x-2\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)

\(\frac{3}{\left(x-1\right)\left(x-2\right)}-\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)

\(\frac{3\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}-\frac{2\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}-\frac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=0\)

\(3x-9-2x+4-x+1=0\)

\(0x-4=0\Rightarrow0x=4\Rightarrow\) Phương trình vô nghiệm

9 tháng 2 2018

\(a.\left(2-3x\right)\left(x^2+2x+3\right)=0.\)

\(\left(2-3x\right)=0\)

\(\left(x^2+2x+3\right)=0\)

\(TH1:2-3x=0\Leftrightarrow x=\frac{-2}{-3}\)

\(TH2:x^2+2x+3=0\Leftrightarrow\left(x^2+2x+1\right)+3\Leftrightarrow\left(x+1\right)^2+3>0\) 

b) \(3x-3x=5+2\) ( vô nghiệm)

c) vô nghiệm

d-\(x^2-5x-6=0\Leftrightarrow\left(x^2-x\right)+\left(6x-6\right)\Leftrightarrow x\left(x-1\right)+6\left(x-1\right)\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

vậy ...

x=1

x=-6

E) \(\frac{2\left(x-3\right)^2}{3}=\frac{3x^2}{2}\) quy đồng khử mẫu ta được

\(4\left(x-3\right)^2-9x^2=0\Leftrightarrow4\left(x-3\right)^2-\frac{4.1.9x^2}{4}\) rút 4 ta được

\(4\left\{\left(x-3\right)^2-\frac{9x^2}{4}\right\}=0\Leftrightarrow4\left\{\left(x-3\right)^2-\left(\frac{3}{2}x\right)^2\right\}\Leftrightarrow4\left(x-3+\frac{3}{2}x\right)\left(x-3-\frac{3}{2}x\right)=0\) ( hằng đẳng thức số 3 )

tích = 0 

vậy ....

F)  trị tuyệt đối + bình phương của 1 số thực luôn lớn hơn hoặc = 0( định lí Pain)

phá trị tuyệt đối ta được

\(\left(x+5\right)^2-\left(3x-2\right)^2=0\)

\(\left(x+5-3x-2\right)\left(x+5+3x-2\right)=0\) ( hẳng đẳng thức số 3 )

tích = 0 suy ra 2 TH vậy .....

g) câu G bạn lên coccoc math bạn ghi là nó ra kết quả phân tích thành nhân tử  chứ làm = tay vừa dài vừa hại não :)

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-24=0\)

\(x\left(x-5\right)x\left(x^2-5x+10\right)=0\) ( coccoc math)

\(\left(x^2-5x+10\right)=0\Leftrightarrow\left(x^2-\frac{2x.5}{2}+\left(\frac{5}{2}\right)^2\right)+10-\frac{25}{4}=0\) ( 10-25/4) = 15/4

\(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\) ( vô nghiệm)

vậy....

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

30 tháng 3 2019

\(a,\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{3}{4}=3-\frac{1}{3}x-\frac{2}{3}\)

\(\frac{13}{12}x=\frac{13}{12}\Rightarrow x=1\)

30 tháng 3 2019

\(b,\left(2x+1\right)^2=\left(x-1\right)^2\Rightarrow\orbr{\begin{cases}2x+1=x-1\\2x+1=1-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=0\end{cases}}}\)

28 tháng 3 2020

\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x^2+2\right)}{\left(x+2\right)\left(x-2\right)}\)

=> ( x + 1)( x + 2) + ( x - 1)( x - 2) = 2x2 + 4

<=> x+ 2x + x + 2 + x2 - 2x - x + 2 = 2x+ 4 

<=>  x+ 2x + x +  x2 - 2x - x - 2x2 = 4 - 2 - 2

<=> 0x = 0

Vậy phương trình vô số nghiệm