\(\left|\sqrt{x+1}\right|+\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+8\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2023

Bước 1: Đặt √x + 1 = a và √x - 1 - 1 = b.

Bước 2: Giải hệ phương trình: ∣a∣ + ∣b∣ = a + 8

Bước 3: Xét các trường hợp: - Khi a ≥ 0 và b ≥ 0: Ta có 2a = a + 8 ⇒ a = 8. Thay a = 8 vào √x + 1 = a ⇒ √x + 1 = 8 ⇒ √x = 7 ⇒ x = 49. Kiểm tra lại, ta có: ∣∣√49 + 1∣∣ + ∣∣√49 - 1 - 1∣∣ = √49 - 1 + 8 ⇒ 8 + 0 = 7 + 8 ⇒ 8 = 15 (sai). Vậy không có nghiệm trong trường hợp này.

 - Khi a ≥ 0 và b < 0: Ta2a = a + 8 ⇒ a = 8. Thay a = 8 vào √x + 1 = a ⇒ √x + 1 = 8 ⇒ √x = 7 ⇒ x = 49. Kiểm tra lại, ta có: ∣∣√49 + 1∣∣ + ∣∣√49 - 1 - 1∣∣ = √49 - 1 + 88 + 0 = 7 + 88 = 15 (sai). Vậy không có nghiệm trong trường hợp này. - Khi a < 0 và b ≥ 0: Ta2a = -a + 8 ⇒ a = 4. Thay a = 4 vào √x + 1 = a ⇒ √x + 1 = 4 ⇒ √x = 3 ⇒ x = 9. Kiểm tra lại, ta có: ∣∣√9 + 1∣∣ + ∣∣√9 - 1 - 1∣∣ = √9 - 1 + 84 + 0 = 3 + 84 = 11 (sai). Vậy không có nghiệm trong trường hợp này. - Khi a < 0 và b < 0: Ta2a = -a + 8 ⇒ a = 4. Thay a = 4 vào √x + 1 = a ⇒ √x + 1 = 4 ⇒ √x = 3 ⇒ x = 9. Kiểm tra lại, ta có: ∣∣√9 + 1∣∣ + ∣∣√9 - 1 - 1∣∣ = √9 - 1 + 84 + 0 = 3 + 84 = 11 (sai). Vậy không có nghiệm trong trường hợp này.

Vậy, phương trình ban đầu không có nghiệm.

13 tháng 2 2020

a) ĐKXD:...

\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)

Đến đây dễ rồi

13 tháng 2 2020

bước đầu bạn làm sai r. nó nằm trong căn nên ko phải bình phương nên ko thể biến đổi thành tổng bình phương được

15 tháng 9 2018

\(\sqrt{x+3}+\sqrt{1-x}=2-8\sqrt{\left(x+3\right)\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{1-x}-2+8\sqrt{\left(x+3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}-\frac{x+3}{\sqrt{1-x}+2}+8\sqrt{\left(x+3\right)\left(x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(1-\frac{\sqrt{x+3}}{\sqrt{1-x}+2}+8\sqrt{x+1}\right)=0\)

\(\Leftrightarrow\sqrt{x+3}=0\)

\(\Leftrightarrow x=-3\)

giải pt: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) làm thế này mà chả hiểu sao lại bị gạch, ai biết chỉ với, cảm ơn nak: + ĐK:\(\left\{{}\begin{matrix}x\ge1\\x+3-4\sqrt{x-1}\ge0\\x+8-6\sqrt{x-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge1\) + pt đã cho \(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\) \(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\) (*) Th1:...
Đọc tiếp

giải pt: \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)

làm thế này mà chả hiểu sao lại bị gạch, ai biết chỉ với, cảm ơn nak:

+ ĐK:\(\left\{{}\begin{matrix}x\ge1\\x+3-4\sqrt{x-1}\ge0\\x+8-6\sqrt{x-1}\ge0\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)

+ pt đã cho \(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\) (*)

Th1: \(\left\{{}\begin{matrix}\sqrt{x-1}-2< 0\\\sqrt{x-1}-3< 0\end{matrix}\right.\)

(*) \(\Leftrightarrow2-\sqrt{x-1}+3-\sqrt{x-1}=1\Leftrightarrow2\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=2\Leftrightarrow x=5\left(N\right)\)

Th2: \(\left\{{}\begin{matrix}\sqrt{x-1}-2\ge0\\\sqrt{x-1}-3\ge0\end{matrix}\right.\)

(*) \(\Leftrightarrow\sqrt{x-1}-2+\sqrt{x-1}-3=1\Leftrightarrow2\sqrt{x-1}=6\Leftrightarrow\sqrt{x-1}=3\Leftrightarrow x=10\left(N\right)\)

Th3: \(\sqrt{x-1}-3< 0\le\sqrt{x-1}-2\)

(*) \(\Leftrightarrow\sqrt{x-1}-2+3-\sqrt{x-1}=1\Leftrightarrow1=1\left(đúng\right)\)

Kl: \(x\ge1\)

3
25 tháng 7 2017

sai là đúng rồi , bạn thử thay x = 2 vô xem thấy liền ah

25 tháng 7 2017

Cold Wind cx dạng bài đó nhưng t làm cách khác u (-_-)

https://hoc24.vn/hoi-dap/question/402888.html

chỗ câu b ah ~~~ cái bảng xét dấu ý (^~^) thử lại bài này vs cách đó xem ntn???

24 tháng 5 2020

bạn làm dc k mà kêu mk

28 tháng 5 2020

mk là hsg toán mà. nhg con đó làm bth lắm

NV
28 tháng 6 2020

ĐKXĐ: \(-4\le x\le1\)

Đặt \(\sqrt{x+4}-\sqrt{1-x}=t\)

\(\Rightarrow t^2=5-2\sqrt{\left(x+4\right)\left(1-x\right)}\Rightarrow\sqrt{\left(x+4\right)\left(1-x\right)}=\frac{5-t^2}{2}\)

Pt trở thành:

\(t\left(1+\frac{5-t^2}{2}\right)=3\Leftrightarrow t\left(7-t^2\right)=6\)

\(\Leftrightarrow t^3-7t+6=0\Leftrightarrow\left(t+3\right)\left(t-1\right)\left(t-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}t=-3\\t=1\\t=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt{x+4}-\sqrt{1-x}=-3\\\sqrt{x+4}-\sqrt{1-x}=1\\\sqrt{x+4}-\sqrt{1-x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+4}+3=\sqrt{1-x}\left(vn\right)\\\sqrt{x+4}=1+\sqrt{1-x}\\\sqrt{x+4}=2+\sqrt{1-x}\end{matrix}\right.\) (1 vô nghiệm do \(VT\ge3;VP\le\sqrt{5}< 3\))

\(\Leftrightarrow\left[{}\begin{matrix}x+4=2-x+2\sqrt{1-x}\\x+4=5-x+4\sqrt{1-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{1-x}\left(x\ge-1\right)\\2x-1=4\sqrt{1-x}\left(x\ge\frac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=1-x\\4x^2-4x+1=16-16x\end{matrix}\right.\) \(\Leftrightarrow...\)

12 tháng 8 2019

Câu 1 :

Xét điều kiện:\(\hept{\begin{cases}x\ge5\\x\le1\end{cases}}\)(Vô lý) 

Vậy pt vô nghiệm

Câu 2 : 

\(2\sqrt{x+2}+2\sqrt{x+2}-3\sqrt{x+2}=1\)\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\)

Vậy x=-1

Câu 3 : 

\(\sqrt{3x^2-4x+3}=1-2x\)\(\Leftrightarrow3x^2-4x+3=1+4x^2-4x\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\sqrt{2}\)

Câu 4 : 

\(4\sqrt{x+1}-3\sqrt{x+1}=4\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x=15\)

12 tháng 8 2019

\(\sqrt{\frac{-6}{1+x}}=5\)

\(\Leftrightarrow\sqrt{\frac{-6}{1+x}}^2=5^2\)

\(\Leftrightarrow\frac{-6}{1+x}=25\)

\(\Leftrightarrow x+1=\frac{-6}{25}\)

\(\Leftrightarrow x=\frac{-6}{25}-1=\frac{-31}{25}\)

12 tháng 8 2019

\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\)

\(\Leftrightarrow\sqrt{x-49}=2\)

\(\Leftrightarrow x-49=4\Leftrightarrow x=53\)

24 tháng 9 2018

Sao lắm dấu bằng thế

26 tháng 9 2018

hack não người xem

27 tháng 1 2018

Đặt \(\sqrt{x}+\sqrt{1-x}=t\)ĐK: bn tự tìm nhá

\(t^2=1+2\sqrt{x\left(1-x\right)}\)\(\Rightarrow2\sqrt{x\left(1-x\right)}=t^2-1\)

\(2.\sqrt[4]{x\left(1-x\right)}=\sqrt{t^2-1}\)

Từ trên Suy ra: \(t-\left(t^2-1\right)-\sqrt{t^2-1}=...\)

đến đây bn tự giải đi , mình lười lắm mà nhớ Tk cho mình nha ^.^ thanks

27 tháng 1 2018

giải sai chỗ này nek 

\(\sqrt[4]{x\left(1-4\right)}=\sqrt{\frac{t^2-1}{2}}\)