Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x^2+1}=t>0\)
\(\Rightarrow\left(4x-1\right)t=2t^2-2x\)
\(\Leftrightarrow2t^2-\left(4x-1\right)t-2x=0\)
\(\Delta=\left(4x-1\right)^2+16x=\left(4x+1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{4x-1-\left(4x+1\right)}{4}=-\dfrac{1}{2}\left(loại\right)\\t=\dfrac{4x-1+4x+1}{4}=2x\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+1}=2x\) (\(x\ge0\))
\(\Leftrightarrow x^2+1=4x^2\)
\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\)
Đặt \(\sqrt{x^2+1}=y\ge1\) pt trở thành \(\left(4x-1\right)y=2y^2-2x\)
\(4xy-y=2y^2-2x\Leftrightarrow2y^2-2x-4xy+y=0\)\(\Leftrightarrow y\left(2y+1\right)-2x\left(2y+1\right)=0\Leftrightarrow\left(2y+1\right)\left(y-2x\right)=0\Leftrightarrow y=2x\)(vì y=-1/2(loại))
\(\Leftrightarrow\sqrt{x^2+1}=2x\Leftrightarrow x=\sqrt{\frac{1}{3}}\)
ĐKXĐ: \(\forall x\in R\)
Đặt \(\sqrt{x^2+1}=a\left(a>0\right)\). Khi đó phương trình cho trở thành:
\(\left(4x-1\right)a=2a^2+2x-1\)
\(\Leftrightarrow2a^2+2x-1-4ax+a=0\)
\(\Leftrightarrow2x\left(1-2a\right)+2a^2+a-1=0\)
\(\Leftrightarrow2x\left(1-2a\right)-\left(a+1\right)\left(1-2a\right)=0\)
\(\Leftrightarrow\left(1-2a\right)\left(2x-a-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=1\\a=2x-1\end{cases}}\Rightarrow\orbr{\begin{cases}2\sqrt{x^2+1}=1\left(1\right)\\\sqrt{x^2+1}=2x-1\left(2\right)\end{cases}}\)
Phương trình (1) \(\Leftrightarrow x^2+1=\frac{1}{4}\Leftrightarrow x^2=-\frac{3}{4}\left(l\right)\)
Phương trình (2) \(\Leftrightarrow\hept{\begin{cases}2x-1\ge0\\3x^2-4x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\left(3x-4\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x=0\end{cases}\left(l\right)}\) hoặc \(\hept{\begin{cases}x\ge\frac{1}{2}\\x=\frac{4}{3}\end{cases}\left(c\right)}\)
Vậy phương trình cho có nghiệm duy nhất \(x=\frac{4}{3}\).
\(\hept{\begin{cases}\sqrt{x^2+1}=a\\2x^2+2x+1=b\end{cases}}\)
\(\Rightarrow2\left(b-2a^2\right)+1=4x-1\)
\(\Rightarrow\left(2b-4a^2+1\right)a=b\)
\(\Leftrightarrow\left(2a-1\right)\left(b-2a^2-a\right)=0\)
Làm nôt
\(\left(4x-1\right)\sqrt{x^2+1}-\left(4x-1\right)\left(x+\frac{1}{\sqrt{3}}\right)=2x^2-2x+2-\left(4x-1\right)\left(x+\frac{1}{\sqrt{3}}\right)\)
\(\Leftrightarrow\frac{\left(4x-1\right)\left(\frac{2}{3}-\frac{2x}{\sqrt{3}}\right)}{\sqrt{x^2+1}+x+\frac{1}{\sqrt{3}}}=\left(-2x^2+\frac{2x}{\sqrt{3}}\right)-x\left(1+2\sqrt{3}\right)+\frac{2\sqrt{3}+1}{\sqrt{3}}\)
\(\Leftrightarrow\left(x-\frac{1}{\sqrt{3}}\right)\left(\frac{\frac{2}{\sqrt{3}}\left(1-4x\right)}{\sqrt{x^2+1}+x+\frac{1}{\sqrt{3}}}+2x+1+2\sqrt{3}\right)=0\)
Mà điều kiện xác định là \(x\ge\frac{1}{4}\)nên \(\left(\frac{\frac{2}{\sqrt{3}}\left(1-4x\right)}{\sqrt{x^2+1}+x+\frac{1}{\sqrt{3}}}+2x+1+2\sqrt{3}\right)>0\)
Vậy phương trình có nghiệm duy nhất là \(x=\frac{1}{\sqrt{3}}\)
sao bạn nghĩ ra được cách thêm bớt \(\left(4x-1\right)\left(x+\frac{1}{\sqrt{3}}\right)\) vậy ???
Đặt: \(t=\sqrt{x^2+1}>0\)
ta có pt ẩn t tham số x.
\(\left(4x-1\right)t=2t^2-2x\)
<=> \(2t^2-\left(4x-1\right)t-2x=0\)
\(\Delta=\left(4x-1\right)^2+4.2.2x=\left(4x+1\right)^2\)
=> \(\orbr{\begin{cases}t=\frac{4x-1-\left(4x+1\right)}{4}=0\left(loai\right)\\t=\frac{4x-1+\left(4x+1\right)}{4}=2x\end{cases}}\)
Với t = 2x => \(\sqrt{x^2+1}=2x\)
=> \(x^2+1=4x^2\)
<=> \(x=\pm\frac{1}{\sqrt{3}}\)
Thay vào phương trình để thử nghiệm nếu thỏa mãn thì nhận còn ko thỏa mãn loại.