\(\frac{x-3}{2015}+\frac{x-2}{2016}=\frac{x-2016}{2}+\frac{x-2015}{3}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

\(\frac{x-3}{2015}+\frac{x-2}{2016}=\frac{x-2016}{2}+\frac{x-2015}{3}\)

\(\Leftrightarrow\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-2}{2016}-1\right)=\left(\frac{x-2016}{2}-1\right)+\left(\frac{x-2015}{3}-1\right)\)

\(\frac{x-2018}{2015}+\frac{x-2018}{2016}-\frac{x-2018}{2}-\frac{x-2018}{3}=0\)

\(\Leftrightarrow\left(x-2018\right).\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}\right)=0\)

Vì \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2}-\frac{1}{3}< 0\)

nên x - 2018 = 0

  ,<=> x = 2018

Vậy phương có 1 nghiệm là x = 2018

27 tháng 2 2018

pt <=> (x-3/2015 - 1) + (x-2/2016 - 1) = (x-2016/2 - 1) + (x-2015/3 - 1)

<=> x-2018/2015 + x-2018/2016 = x-2018/2 + x-2018/3

<=> x-2018/2 + x-2018/3 - x-2018/2015 - x-2018/2016 = 0

<=> (x-2018).(1/2+1/3-1/2015-1/2016) = 0

<=> x-2018 = 0 ( vì 1/2+1/3-1/2015-1/2016 > 0 )

<=> x=2018

Tk mk nha

16 tháng 10 2017

đặt 2016=a;x=b;y=c;2015=d

pt trở thành:

\(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}=2\)

đến đấy là bđt nesbit 4 số,dễ rồi

16 tháng 11 2016

\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)

\(\Rightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=2016-2016\)

\(\Rightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)

\(\Rightarrow\left(x-2017\right).\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+1\right)=0\)

\(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+1\ne0\Rightarrow x-2017=0\)

=> x = 2017

23 tháng 9 2016

\(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+...+\frac{x-2016}{1}=2016\)

\(\Leftrightarrow\frac{x-1}{2016}-1+\frac{x-2}{2015}-1+\frac{x-3}{2014}-1+...+\frac{x-2016}{1}-1=0\)

\(\Leftrightarrow\frac{x-2017}{2016}+\frac{x-2017}{2015}+\frac{x-2017}{2014}+...+\frac{x-2017}{1}=0\)

\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)

Có: \(\frac{1}{2016}+\frac{1}{2015}+...+1\ne0\)

\(\Rightarrow x-2017=0\)

\(\Rightarrow x=2017\)

23 tháng 9 2016

<=> \(\frac{x-1}{2016}+\frac{x-2}{2015}+\frac{x-3}{2014}+....+\frac{x-2016}{1}-2016=0\)\(=0\)

<=> \(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)+...+\left(\frac{x-2016}{1}-1\right)=0\)

<=> \(\frac{x-2017}{2016}+\frac{x-2017}{2015}+...+\frac{x-2017}{1}=0\)

<=> \(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}\right)=0\)

<=> \(x-2017=0\)\(\left(do\frac{1}{2016}+\frac{1}{2015}+...+\frac{1}{1}>0\right)\)

<=> \(x=2017\)

Vậy x = 2017

đúng thì

tớ ko bt lm abc , tớ lm d thôi nha , thứ lỗi 

\(\frac{5}{2x-3}-\frac{1}{x+2}=\frac{5}{x-6}-\frac{7}{2x-1}\)

\(\frac{3x+13}{2x^2+x-6}=\frac{5}{x-6}+\frac{7}{1-2x}\)

\(\frac{3x+13}{\left(x+2\right)\left(2x-3\right)}=\frac{3x+37}{\left(x-6\right)\left(2x-1\right)}\)

\(\frac{10-9x}{-4x^3+32x^2-51x+18}=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{10}{9}\end{cases}}\)

20 tháng 4 2018

Bài 3 : 

\(\frac{x-1}{2016}+\frac{x-2}{2015}=\frac{x-3}{2014}+\frac{x-4}{2013}\)

\(\Leftrightarrow\)\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-4}{2013}-1\right)\)

\(\Leftrightarrow\)\(\frac{x-1-2016}{2016}+\frac{x-2-2015}{2015}=\frac{x-3-2014}{2014}+\frac{x-4-2013}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}=\frac{x-2017}{2014}+\frac{x-2017}{2013}\)

\(\Leftrightarrow\)\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)

\(\Leftrightarrow\)\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)

Vì \(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\)

Nên \(x-2017=0\)

\(\Rightarrow\)\(x=2017\)

Vậy \(x=2017\)

Chúc bạn học tốt ~ 

20 tháng 4 2018

Bài 1 : 

\(\left(8x-5\right)\left(x^2+2014\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x-5=0\\x^2+2014=0\end{cases}\Leftrightarrow\orbr{\begin{cases}8x=0+5\\x^2=0-2014\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}8x=5\\x^2=-2014\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{8}\\x=\sqrt{-2014}\left(loai\right)\end{cases}}}\)

Vậy \(x=\frac{5}{8}\)

Chúc bạn học tốt ~ 

30 tháng 6 2020

PT đã cho tương đương với:

\(\left(\frac{x}{2017}+1\right)+\left(\frac{x+1}{2016}+1\right)=\left(\frac{x+2}{2015}+1\right)+\left(\frac{x+3}{2014}+1\right)\)

\(\Leftrightarrow\frac{x+2017}{2017}+\frac{x+2017}{2016}=\frac{x+2017}{2015}+\frac{x+2017}{2014}\)

\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2017}+\frac{1}{2016}\right)=\left(x+2017\right)\left(\frac{1}{2015}+\frac{1}{2014}\right)\)

\(\Leftrightarrow x+2017=0\Leftrightarrow x=-2017\)

Sai một chút rồi kìa em

9 tháng 2 2016

\(\Leftrightarrow\frac{2-x}{2014}-1=-\frac{x+2012}{2014}\)

\(\Rightarrow\frac{1-x}{2015}-\frac{x}{2016}=-\frac{4031x-2016}{4062240}\)

\(\Rightarrow-\frac{x+2012}{2014}=-\frac{4031x-2016}{4062240}\)

\(\Rightarrow-\frac{x}{2014}-\frac{1006}{1007}=\frac{1}{2015}-\frac{4031x}{4062240}\)

\(\Rightarrow\frac{2028097x}{4090675680}-\frac{2028097}{2029105}=0\)

\(\Rightarrow\frac{2028097\left(x-2016\right)}{4090675680}=0\)

=>x=2016

 

9 tháng 2 2016

\(\frac{2-x}{2014}-1=\frac{1-x}{2015}-\frac{x}{2016}\)  \(\left(\text{*}\right)\)

Cộng hai vế của phương trình trên với  \(2\) , khi đó, phương trình \(\left(\text{*}\right)\)  trở thành:

\(\frac{2-x}{2014}+1=\left(\frac{1-x}{2015}+1\right)+\left(1-\frac{x}{2016}\right)\)

\(\Leftrightarrow\)  \(\frac{2016-x}{2014}=\frac{2016-x}{2015}+\frac{2016-x}{2016}\)  

\(\Leftrightarrow\)  \(\left(2016-x\right)\left(\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\right)=0\)  

Vì  \(\frac{1}{2014}-\frac{1}{2015}-\frac{1}{2016}\ne0\)  nên  \(2016-x=0\)  \(\Leftrightarrow\)  \(x=2016\)

Vậy, tập nghiệm của pt \(\left(\text{*}\right)\) là  \(S=\left\{2016\right\}\)

16 tháng 2 2020

a, \(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)

= \(\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{x^2-1}{\left(x-1\right)\left(x-3\right)}-\frac{8}{\left(x-1\right)\left(x-3\right)}\)

( x + 5)(x - 3) = \(x^2-1\) - 8

x\(^2\) -3x + 5x -15 = \(x^2-9\)

= > \(x^2-x^2\) +2x = 15 - 9

=> 2x = 6

=> x = 3