Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\frac{x-a}{bc}+\frac{x-b}{ac}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\frac{ax-a^2+bx-b^2+cx-c^2}{abc}=2\left(\frac{ab+bc+ac}{abc}\right)\)
\(ax-a^2+bx-b^2+cx-c^2=2\left(ab+bc+ac\right)\)
\(x\left(a+b+c\right)-\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(x\left(a+b+c\right)=a^2+b^2+c^2+2ab+2bc+2ac\)
\(x=a+b+c\)
\(c,\frac{x-a-b}{c}-1+\frac{x-b-c}{a}-1+\frac{x-a-c}{b}-1=0.\)
\(\frac{x-a-b-c}{c}+\frac{x-a-b-c}{a}+\frac{x-a-b-c}{b}=0\)
\(\left(x-a-b-c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\)
=>\(\orbr{\begin{cases}a+b+c=x\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\end{cases}}\)
Vậy.......
1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~
\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)
Bài 1:
a, \(\frac{1}{x+1}+\frac{2}{x-1}=\frac{1+x^2}{x^2-1}\) (ĐKXĐ: x \(\ne\) \(\pm\) 1)
\(\Leftrightarrow\) \(\frac{x-1}{\left(x+1\right)\left(x-1\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{1+x^2}{\left(x+1\right)\left(x-1\right)}\)
\(\Rightarrow\) x - 1 + 2(x + 1) = 1 + x2
\(\Leftrightarrow\) x - 1 + 2x + 2 - 1 - x2 = 0
\(\Leftrightarrow\) -x2 + 3x = 0
\(\Leftrightarrow\) x(3 - x) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐKXĐ\right)\\x=3\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy S = {0; 3}
b, \(\frac{x-2}{x+2}-\frac{x}{x-2}=\frac{8}{x^2-4}\) (ĐKXĐ: x \(\ne\) \(\pm\) 2)
\(\Leftrightarrow\) \(\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}-\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{8}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\) (x - 2)2 - x(x + 2) = 8
\(\Leftrightarrow\) (x - 2)2 - x(x + 2) - 8 = 0
\(\Leftrightarrow\) x2 - 4x + 4 - x2 - 2x - 8 = 0
\(\Leftrightarrow\) -6x - 4 = 0
\(\Leftrightarrow\) x = \(\frac{-2}{3}\) (TMĐKXĐ)
Vậy S = {\(\frac{-2}{3}\)}
c, \(\frac{1}{x}\) + \(\frac{2}{x-3}\) = \(\frac{1-5x}{x^2-3x}\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) 3)
\(\Leftrightarrow\) \(\frac{x-3}{x\left(x-3\right)}+\frac{2x}{x\left(x-3\right)}=\frac{1-5x}{x\left(x-3\right)}\)
\(\Rightarrow\) x - 3 + 2x = 1 - 5x
\(\Leftrightarrow\) 3x - 3 = 1 - 5x
\(\Leftrightarrow\) 3x + 5x = 1 + 3
\(\Leftrightarrow\) 8x = 4
\(\Leftrightarrow\) x = \(\frac{1}{2}\) (TMĐKXĐ)
Vậy S = {\(\frac{1}{2}\)}
Bài 2:
a, \(\frac{1}{x+2}=\frac{5}{2-x}+\frac{12+x}{x^2-4}\)
\(\Leftrightarrow\) \(\frac{1}{x+2}=\frac{-5}{x-2}+\frac{12+x}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\) \(\frac{x-2}{\left(x+2\right)\left(x-2\right)}=\frac{-5\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{12+x}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow\) x - 2 = -5(x + 2) + 12 + x
\(\Leftrightarrow\) x - 2 = -5x - 10 + 12 + x
\(\Leftrightarrow\) x - 2 = -4x + 2
\(\Leftrightarrow\) x + 4x = 2 + 2
\(\Leftrightarrow\) 5x = 4
\(\Leftrightarrow\) x = \(\frac{4}{5}\)
Vậy S = {\(\frac{4}{5}\)}
Chúc bn học tốt!! (Phần b hình như không có gì thì phải)
ĐKXĐ : a;b;c>0;a≠−(b+c);b≠−(c+a);c≠−(a+b)a;b;c≠0;a≠−(b+c);b≠−(c+a);c≠−(a+b)
a+b−xc+b+c−xa+c+a−xb+4xa+b+c=1a+b−xc+b+c−xa+c+a−xb+4xa+b+c=1
⇔(a+b−xc+1)+(b+c−xa+1)+(c+a−xb+1)+4xa+b+c−3−1=0⇔(a+b−xc+1)+(b+c−xa+1)+(c+a−xb+1)+4xa+b+c−3−1=0
⇔a+b+c−xc+a+b+c−xa+a+b+c−xb+4xa+b+c−4=0⇔a+b+c−xc+a+b+c−xa+a+b+c−xb+4xa+b+c−4=0
⇔(a+b+c−x)(1a+1b+1c)+4(x−a−b−c)a+b+c=0⇔(a+b+c−x)(1a+1b+1c)+4(x−a−b−c)a+b+c=0
⇔(a+b+c−x)(1a+1b+1c−4a+b+c)=0⇔(a+b+c−x)(1a+1b+1c−4a+b+c)=0
Do 1a+1b+1c−4a+b+c≠01a+1b+1c−4a+b+c≠0
⇒a+b+c−x=0⇔x=a+b+c⇒a+b+c−x=0⇔x=a+b+c
Vậy ...
Ta có pt : \(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\) (1)
( ĐK: Do bài cho a,b,c > 0 rồi nên không cần nhé bạn )
Pt (1) \(\Leftrightarrow\left(\frac{a+b-x}{c}+1\right)+\left(\frac{b+c-x}{a}+1\right)+\left(\frac{c+a-x}{b}+1\right)+\left(\frac{4x}{a+b+c}-4\right)=0\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}-\frac{4\left(a+b+c-x\right)}{a+b+c}=0\)
\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)
Do : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}\ne0\forall a,b,c>0\)
Nên : \(a+b+c-x=0\)
\(\Leftrightarrow a+b+c=x\)
Vậy : pt (1) có tập nghiệm \(S=\left\{a+b+c\right\}\)
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
\(ĐKXĐ:a,b,c\ne0\)
\(\frac{x-a}{bc}+\frac{x-b}{ca}+\frac{x-c}{ab}=\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow\frac{xa-a^2}{abc}+\frac{xb-b^2}{abc}+\frac{xc-c^2}{abc}=\frac{2bc}{abc}+\frac{2ac}{abc}+\frac{2ab}{abc}\)
\(\Leftrightarrow\frac{xa-a^2+xb-b^2+xc-c^2}{abc}=\frac{2bc+2ac+2ab}{abc}\)
\(\Leftrightarrow xa-a^2+xb-b^2+xc-c^2=2bc+2ac+2ab\)
\(\Leftrightarrow xa+xb+xc=2bc+2ac+2ab+a^2+b^2+c^2\)
\(\Leftrightarrow x\left(a+b+c\right)=\left(a+b+c\right)^2\)
\(\Leftrightarrow x=a+b+c\)
Vậy x = a + b + c
\(ĐKXĐ:a,b,c\ne0\)
\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)
\(\Leftrightarrow\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)
\(\Leftrightarrow1+\frac{a+b-x}{c}+1+\frac{b+c-x}{a}+1+\frac{c+a-x}{b}=4\)
\(-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)
\(\frac{4\left(a+b+c\right)}{a+b+c}-\frac{4x}{a+b+c}\)
\(\Leftrightarrow\frac{a+b+c-x}{c}+\frac{a+b+c-x}{a}+\frac{a+b+c-x}{b}=\)
\(\frac{4\left(a+b+c-x\right)}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)
\(\Rightarrow\left(a+b+c-x\right)=0\)hoặc \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)
+) Nếu \(\Rightarrow\left(a+b+c-x\right)=0\)thì x = a + b + c
+) Nếu \(\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b+c}\right)=0\)thì x thỏa mãn với mọi số