Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)\(ĐKXĐ:x\ge-\frac{5}{7}\)
\(\Leftrightarrow9x-7=7x+5\)
\(\Leftrightarrow9x-7x=5+7\)
\(\Leftrightarrow2x=12\)
\(\Leftrightarrow x=6\)
\(b,\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow\sqrt{4\left(x-5\right)}+3.\frac{\sqrt{x-5}}{\sqrt{9}}-\frac{1}{3}\sqrt{9\left(x-5\right)}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}\left(2+1-1\right)=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
\(\Leftrightarrow x=9\)
Trả lời
đưa căn 7x+2 sang vế bên phải rồi mũ 3 lên là đc mầ
hok tốt
ĐKXĐ: x > -2/7
Đặt \(\hept{\begin{cases}\sqrt[3]{2x-1}=a\\\sqrt{7x+2}=b\ge0\end{cases}}\Rightarrow7a^3-2b^2=14x-7-14x-4=-11\)
Từ đề bài \(\Rightarrow4a-b=1\)
Ta có hệ \(\hept{\begin{cases}7a^3-2b^2=-11\\4a-b=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}7a^3-2b^2=-11\\b=4a-1\end{cases}}\)
\(\Rightarrow7a^3-2\left(4a-1\right)^2=-11\)
\(\Leftrightarrow\left(a-1\right)\left(7a^2-25a-9\right)=0\)
Đến đây tìm được a => x
c) (d tương tự)
\(\sqrt[3]{7-16x}=a;\text{ }\sqrt{2x+8}=b\Rightarrow a^3+8b^2=71\)
và \(a+2b=5\)
--> Thế
\(a\text{) }\sqrt{1-x^2}=y\Rightarrow x^2+y^2=1\)
Mà \(x^3+y^3=\sqrt{2}xy\Rightarrow\left(x^3+y^3\right)^2=2x^2y^2=2x^2y^2\left(x^2+y^2\right)\text{ (*)}\)
Tới đây có dạng đẳng cấp, có thể phân tích nhân tử hoặc chia xuống.
y = 0 thì x = 1 (không thỏa pt ban đầu)
Xét y khác 0. Chia cả 2 vế của (*) cho y6:
\(\text{(*)}\Leftrightarrow\left(\frac{x^3}{y^3}+1\right)^2=2\frac{x^2}{y^2}\left(\frac{x^2}{y^2}+1\right)\)\(\Leftrightarrow\left(\frac{x}{y}-1\right)\left[\left(\frac{x}{y}\right)^5+\left(\frac{x}{y}\right)^4+\left(\frac{x}{y}\right)^3+3\left(\frac{x}{y}\right)^2+\frac{x}{y}-1\right]=0\)
Không khả quan lắm :)) bạn tự tìm cách khác nhé.
b) \(\frac{2\left(x+1\right)}{3x^2+x}+\frac{13\left(x+1\right)}{3x^2+x+6\left(x+1\right)}=6\) (1)
Đặt \(a=x+1;b=3x^2+x\) thì
\(\left(1\right)\Leftrightarrow\frac{2a}{b}+\frac{13a}{b+6a}=6\)
\(\Leftrightarrow4a^2-7ab-2b^2=0\)
\(\Leftrightarrow\left(a-2b\right)\left(4a+b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=2b\\a=-\frac{1}{4}b\end{cases}}\)
Đến đây thì dễ rồi
a) x≠0
x^2+4/x^2=(x-2/x)^2+4
Pt<=>(x-2/x)^2+4-4(x-2/x)-9=0
<=>(x-2/x)^2-4(x-2/x)-5=0
Đặt t=x-2/x
Pt<=> t^2-4t-5=0
Đến đây tìm t rồi quy đồng lên tìm ra x nhé!
b)x>=-2
(√(x+5)-√(x+2))(1+√(x^2+7x+10))=3
<=> (√(x+5)-√(x+2))(1+√(x+5)(x+2))=3
Đặt √(x+5)=a;√(x+2)=b (a>b>=0)
=> a^2-b^2=3
Pt<=>(a-b)(1+ab)=a^2-b^2
<=>(a-b)(1+ab)=(a-b)(a+b)
Mà a>b=>a-b>0
=>ab+1=a+b
<=>(a-1)(b-1)=0
a=1=>x+5=1<=>x=-4(loại)
b=1=>x+2=1<=>x=-1 (thoả mãn)
Vậy x=-1
Đặt \(u=\sqrt{10-x};v=\sqrt{3+x}\)
Phương trình trở thành \(u+v+2uv=17\)
\(\Rightarrow u+v=\sqrt{17}\)
đến đây thì EZ rồi
Đặt \(\hept{\begin{cases}\sqrt{7x+11}=a\\\sqrt{9-7x}=b\end{cases}}\)
\(\Rightarrow a^2-b^2=14x+2\)
\(\Rightarrow\frac{2}{a^2-b^2}+\frac{1}{ab}=\frac{7}{24}\)
\(\Leftrightarrow\left(b+7a\right)\left(7b-a\right)=0\)
Làm nhầm phần phân tích nhân tử giờ làm lại cách khác.
Đặt \(7x+11=a\)
\(\Rightarrow7x=a-11\)
\(\Rightarrow\frac{1}{a-10}+\frac{1}{\sqrt{a\left(20-a\right)}}=\frac{7}{24}\)
\(\Leftrightarrow\frac{1}{\sqrt{a\left(20-a\right)}}=\frac{7}{24}-\frac{1}{a-10}\)
\(\Leftrightarrow\frac{1}{a\left(20-a\right)}=\left(\frac{7}{24}-\frac{1}{a-10}\right)^2\)
\(\Leftrightarrow\left(a-18\right)\left(a-16\right)\left(49a^2-630a+200\right)=0\)
PS: Bài giải trên bỏ đi nha