Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện xác định : \(\hept{\begin{cases}2\ge\frac{1}{\sqrt{2-x}}\\x< 2\\x\ge0\end{cases}}\) \(\Leftrightarrow0\le x\le\frac{7}{4}\)
Ta có : \(\sqrt{2-\frac{1}{\sqrt{2-x}}}=x\)
\(\Rightarrow2-\frac{1}{\sqrt{2-x}}=x^2\)
\(\Leftrightarrow x^2\sqrt{2-x}-2\sqrt{2-x}+1=0\)
Đặt \(t=\sqrt{2-x},t\ge0\Rightarrow x=2-t^2\)
Ta có : \(\left(2-t^2\right)^2.t-2t+1=0\)
\(\Leftrightarrow t\left[\left(2-t^2\right)^2-1\right]-\left(t-1\right)=0\)
\(\Leftrightarrow t\left(2-t^2-1\right)\left(2-t^2+1\right)-\left(t-1\right)=0\)
\(\Leftrightarrow t\left(t-1\right)\left(t+1\right)\left(t^2-3\right)-\left(t-1\right)=0\)
\(\Leftrightarrow\left(t-1\right)\left[t\left(t+1\right)\left(t^2-3\right)-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-1=0\\t\left(t+1\right)\left(t^2-3\right)-1=0\end{cases}}\)
- Nếu t - 1 = 0 => t = 1 ta có \(x=2-1^2=1\)(tmđk)
- Nếu \(t\left(t+1\right)\left(t^2-3\right)-1=0\) , từ điều kiện \(0\le x\le\frac{7}{4}\)ta có \(t\left(t+1\right)\left(t^2-3\right)-1\le-\frac{179}{256}< 0\)=> pt này vô nghiệm.
Vậy pt có nghiệm x = 1
a/ Dặt \(\sqrt{x+1}=a\ge0\)
\(\Rightarrow4\sqrt{x+1}=x^2+5x+4\)
\(\Leftrightarrow4\sqrt{x+1}=\left(x+1\right)^2+3\left(x+1\right)\)
\(\Leftrightarrow4a=a^4+3a^2\)
\(\Leftrightarrow a\left(a-1\right)\left(a^2+a+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+1}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
b/ Đặt \(\hept{\begin{cases}\sqrt{4x+1}=a\ge0\\\sqrt{3x-2}=b\ge0\end{cases}}\)
\(\Rightarrow a^2-b^2=x+3\)
Từ đây ta có:
\(a-b=\frac{a^2-b^2}{5}\)
\(\Leftrightarrow\left(a-b\right)\left(5-a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\left(1\right)\\a+b=5\left(2\right)\end{cases}}\)
Thế vô làm tiếp
Ko chắc nhá, lúc làm chả biết có tính nhầm chỗ nào ko nữa:) Vả lại bài này chưa khảo lại bài đâu đấy, lười khảo lại lắm, đăng lên luôn.
a) ĐK: \(x\ge-\frac{1}{4}\)
PT \(\Leftrightarrow4x^2+4x+1-2\sqrt{4x+1}+1=0\)
\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)
b) ĐK: \(x\ge-\frac{1}{2}\)
PT \(\Leftrightarrow\left(x^2-8x+16\right)+2x+1-6\sqrt{2x+1}+9=0\)
\(\Leftrightarrow\left(x-4\right)^2+\left(\sqrt{2x+1}-3\right)^2=0\)
c) ĐK: \(x\ge-1\)
PT có một nghiệm xấu @@ chưa nghĩ ra, có lẽ phải dùng liên hợp.
d) Số bự quá:( Nhưng thôi vì nghiệm đẹp nên vẫn làm:D
\(PT\Leftrightarrow\left(x^2-2x+1\right)+\left(2017x-2016-2\sqrt{2017x-2016}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)
e)Nghiệm đẹp nhưng dạng phân thức -> ko muốn làm:D
f) Liên hợp đi cho nó khỏe:v
f) Liên hợp đi cho nó khỏe:D
ĐK: \(x\ge\frac{1}{5}\)
PT \(\Leftrightarrow2x^2-6x+4+\left(x+1\right)-\sqrt{5x-1}=0\)
\(\Leftrightarrow2\left(x-2\right)\left(x-1\right)+\frac{\left(x-2\right)\left(x-1\right)}{x+1+\sqrt{5x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left[2+\frac{1}{x+1+\sqrt{5x-1}}\right]=0\)
Cái ngoặc to nhìn liếc qua một phát cũng thấy nó vô nghiệm.
a/ ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1}=\sqrt{5x-1}+\sqrt{3x-2}\)
\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)
\(\Leftrightarrow2-7x=2\sqrt{\left(5x-1\right)\left(3x-2\right)}\)
Do \(x\ge1\Rightarrow2-7x< 0\Rightarrow\left\{{}\begin{matrix}VP\ge0\\VT< 0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ ĐKXĐ: \(x\ge1\)
\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|=2\)
Mà \(\left|\sqrt{x-1}+1\right|+\left|1-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|=2\)
Dấu "=" xảy ra khi và chỉ khi \(1-\sqrt{x-1}\ge0\Rightarrow x\le2\Rightarrow1\le x\le2\)
Vậy nghiệm của pt là \(1\le x\le2\)
\(\Leftrightarrow x+y+z=2\sqrt{x-2}+2\sqrt{y+2003}+2\sqrt{z-2004}\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)\)
\(+\left(z-2004-2\sqrt{z-2004}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)
Vì biểu thức trên là tổng của các số hạng không âm nên nó bằng 0 khi và chỉ khi các số hạng phải bằng 0
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-2003}=1\\\sqrt{z-2004}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2004\\z=2005\end{cases}}}\)
\(ĐK:x\ge2,y\ge-2003,z\ge2004\)
Pt đã cho tương đương :
\(x+y+z-2\sqrt{x-2}-2\sqrt{y+2003}-2\sqrt{z-2004}=0\)
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)+\left(z-2004-2\sqrt{z-2004}+1\right)\)\(=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=1\\y+2003=1\\z-2004=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-2002\\z=2005\end{cases}}\)(Thỏa mãn)
bắng 1/3 nhé bạn
cậu giải ra giúp mk đi