Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi ạ. Tại không giỏi đánh máy. Vậy bỏ câu này đi ạ. Chị giải câu kia giúp e nhé
Em trục căn thức:
\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)
<=> \(\frac{-3x+3}{\sqrt{x+3}+2\sqrt{x}}=\frac{-x+1}{\sqrt{2x+2}+\sqrt{3x+1}}\)
=> nhân tử chung là -x + 1 . Tự làm tiếp nhé!
làm như cô thì vẫn cần phải đánh giá rất khó chịu nhé
\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\left(ĐKXĐ:x\ge0\right)\)
\(< =>\sqrt{x+3}-\sqrt{2x+2}+\sqrt{3x+1}-2\sqrt{x}=0\)
\(< =>\frac{\sqrt{x+3}^2-\sqrt{2x+2}^2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{\sqrt{3x+1}^2-4\sqrt{x}^2}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\frac{x+3-2x-2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{3x+1-4x}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\frac{1-x}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1-x}{\sqrt{3x+1}+2\sqrt{x}}=0\)
\(< =>\left(1-x\right)\left(\frac{1}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1}{\sqrt{3x+1}+2\sqrt{x}}\right)=0< =>x=1\)
Dạ 2 đề là 1 ạ tại em muốn ghi lại cho mọi người hiểu ạ
pt2 <=> 4x^2 -4x+1+4y^2 -4y+1=18
<=>x^2+y^2-3=x+y+1
thay vào pt 1 ta đk
căn (x+2) +3 căn ( y-1) =căn ( 5(x+y+1))
đặt căn (x+2)=a căn (y-1)=b
pt1 <=> a+3b=căn (5a^2+5b^2)
bình phương hai vế ta đk
a^2 +6ab+9b^2 =5a^2+5b^2
<=>4a^2-6ab-4b^2=0
<=>(2a+b)(a-2b)=0
sau đó bạn giải từng trường hợp rồi thay ngược lại pt 2 mà giải ra x với y
ĐKXĐ: \(x\ge\frac{1}{2}\)
Chắc pt là thế này:
\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=3\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=3\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}=3\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|=3\)
- Nếu \(\sqrt{x-1}-1\ge0\Leftrightarrow x\ge2\)
\(\Leftrightarrow\sqrt{x-1}+1+\sqrt{x-1}-1=3\)
\(\Leftrightarrow\sqrt{x-1}=\frac{3}{2}\Rightarrow x=\frac{13}{4}\) (t/m)
- Nếu \(\frac{1}{2}\le x< 2\)
\(\Leftrightarrow\sqrt{x-1}+1+1-\sqrt{x-1}=3\Leftrightarrow2=3\) (vô lý)
Vậy pt có nghiệm duy nhất \(x=\frac{13}{4}\)