Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
a) 3x - 2(5 + 2x) =45 - 2x
=> 3x - 10 - 4x = 45 - 2x
=> 3x - 4x + 2x = 45 + 10
=> x = 55
b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)
=> 5(2x + 17) = 3(x - 3)
=> 10x + 85 = 3x - 9
=> 7x = -94
=> x = -94/7
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)
=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)
=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)
=> (-11x - 3).7 = (4x - 33).12
= -77x - 21 = 48x - 396
=> x = 3
d) (x - 1)(5x + 3) = (3x - 8)(x - 1)
=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0
=> (x - 1)(2x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\)
e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0
=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0
=> (x - 1)(4x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)
f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)
=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)
=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)
=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))
=> x = 50
b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)
\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)
f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)
\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)
\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)
\(\Leftrightarrow x=-66\)
\(a,\)( sửa lại xíu đề cho đúng nhé )
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=-\frac{2x}{x^2+x+1}\)
\(\Rightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Rightarrow x^2+x+1-3x^2=-2x^2+2x\)
\(\Rightarrow x=1\)
\(g,\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)=-16\)
\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)=-16\)
Đặt \(x^2+10x+16=a\)
\(\Rightarrow a\left(a+8\right)=-16\)
\(\Rightarrow a^2+8a+16=0\)
\(\Rightarrow\left(a+4\right)^2=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Rightarrow x^2+10x+25-25=0\)
\(\Rightarrow\left(x+5\right)^2-\left(\sqrt{5}\right)^2=0\)
\(\Rightarrow\left(x+5-\sqrt{5}\right)\left(x+5+\sqrt{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)