Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 3(x+7)-2x+5>0
=>3x+21-2x+5>0
=>x+26>0
=>x>-26
Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)
=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)
=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)
=>\(4x+8-9x-27< 8x-8-3x+12\)
=>-5x-19<5x+4
=>-10x<23
=>\(x>-\dfrac{23}{10}\)
b: \(3x+2+\left|x+5\right|=0\left(1\right)\)
TH1: x>=-5
(1) trở thành: 3x+2+x+5=0
=>4x+7=0
=>\(x=-\dfrac{7}{4}\left(nhận\right)\)
TH2: x<-5
=>x+5<0
=>|x+5|=-x-5
Phương trình (1) sẽ trở thành:
\(3x+2-x-5=0\)
=>2x-3=0
=>2x=3
=>\(x=\dfrac{3}{2}\)
a) \(\dfrac{x+5}{3\left(x-1\right)}+1=\dfrac{3x+7}{5\left(x-1\right)}\) ( đk: \(x\ne1\))
\(\Leftrightarrow\dfrac{5\left(x+5\right)}{15\left(x-1\right)}+\dfrac{15\left(x-1\right)}{15\left(x-1\right)}=\dfrac{3\left(3x+7\right)}{15\left(x-1\right)}\)
\(\Rightarrow5\left(x+5\right)+15\left(x-1\right)=3\left(3x+7\right)\)
\(\Leftrightarrow5x+25+15x-15=9x+21\)
\(\Leftrightarrow5x+15x-9x=21-25+15\)
\(\Leftrightarrow11x=11\Leftrightarrow x=1\) (loại)
Vậy tập nghiệm: \(S=\varnothing\)
b) \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}-\dfrac{8}{x^2+2x-3}=1\) (đk: \(x\ne1,x\ne-3\))
\(\Leftrightarrow\dfrac{\left(3x-1\right)\left(x+3\right)}{x^2+2x-3}-\dfrac{\left(2x+5\right)\left(x-1\right)}{x^2+2x-3}-\dfrac{8}{x^2+2x-3}=\dfrac{x^2+2x-3}{x^2+2x-3}\)
\(\Rightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)-8=x^2+2x-3\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5-8=x^2+2x-3\)
\(\Leftrightarrow3x=3\Leftrightarrow x=1\) (loại)
Vậy tập nghiệm: \(S=\varnothing\)
a, \(\left(x+2\right)\left(x+4\right)-x^2=24\\ \Rightarrow x^2+6x+8-x^2=24\\ \Rightarrow6x+8=24\\ \Rightarrow6x=16\\ \Rightarrow x=\dfrac{8}{3}\)
b, \(\left(x+5\right)\left(x-5\right)=x^2+x\)
\(\Rightarrow x^2+x-\left(x+5\right)\left(x-5\right)=0\)
\(\Rightarrow x^2+x-x^2+25=0\\ \Rightarrow x+25=0\\ \Rightarrow x=-25\)
\(a,< =>x^2+4x+2x+8-x^2=24< =>6x+8=24< =>x=\dfrac{24-8}{6}=\dfrac{8}{3}\)
b,\(< =>x^2-25-x^2-x=0< =>-25-x=0< =>x=-25\)
c,\(< =>4x^2-9-4x^2+4x=0< =>4x-9=0< =>x=\dfrac{9}{4}\)
d,\(< =>x^3+2^3=9< =>x^3=1=>x=1\)
a.
3x – 2 = 2x – 3
⇔ 3x – 2x = -3 + 2
⇔ x = -1.
Vậy phương trình có nghiệm x = -1.
b.
2(x-3)+5x(x-1)=5x^2
<=>2x-6+5x^2-5x=5x^2
<=>2x+5x^2-5x-5x^2=6
<=>-3x=6
<=>x=-2
Vậy nghiệm của pt là x=-2
a>16-x/4=2x+1/3
<=>3[16-x)=4(2x+1)
<=>48-3x=8x+8
<=>-3x-8x=8-48
<=>-5x=-40
<=>x=8
a: \(\Leftrightarrow30\left(x-3\right)-16=9\left(x-1\right)+72\)
\(\Leftrightarrow30x-90-16=9x-9+72\)
=>30x-106=9x+63
=>21x=169
hay x=169/21
b: =>4x+20=2x-3
=>2x=-23
hay x=-23/2
3:
Gọi hai số cần tìm lần lượt là a,b
Theo đề, ta có: a=2b và a-b=22
=>b=22; a=44
a)
\(x^3+\left(x-5\right)\left(x+8\right)=2x^2-37\\ \Leftrightarrow x^3+x^2+3x-40=2x^2-37\\ \Leftrightarrow x^3-x^2+3x-3=0\\ \Leftrightarrow x^2\left(x-3\right)+3\left(x-3\right)=0\\ \Leftrightarrow\left(x^2+3\right)\left(x-3\right)=0\)
Vì \(x^2+3\ge3>0\Rightarrow x-3=0\\ \Leftrightarrow x=3\)
b)
\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\\ \Leftrightarrow\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt \(x^2+x=y\)
\(\Rightarrow y\left(y-2\right)=24\\ \Leftrightarrow y^2-2y+1=25\\ \Leftrightarrow\left(y-1\right)^2=25\\ \Leftrightarrow\left[{}\begin{matrix}y-1=5\\y-1=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}y=6\\y=-4\end{matrix}\right.\)
Nếu y = 6
\(\Rightarrow x^2+x=6\\ \Leftrightarrow x^2+x-6=0\\ \Leftrightarrow x^2+2x-3x-6=0\\ \Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Nếu y = -4
\(\Rightarrow x^2+x=-4\\ \Leftrightarrow x^2+x+\dfrac{1}{4}=-4+\dfrac{1}{4}\\ \Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=-\dfrac{15}{4}\)
Mà \(\left(x+\dfrac{1}{.2}\right)^2\ge0>-\dfrac{15}{4}\)
`=> Loại`
c) Vế còn lại là bao nhiêu?
a) ta có :(x-1)(x-2)(x+3)(x+4)=24
<=>[(x-1)(x+3)].[(x-2)(x+4)] =24
<=>(x^2 +2x -3)(x^2+2x -8)=24
đặt x^2 +2x -3 =a => (x^2 +2x -3)(x^2 +2x-8)=a(a-5) =24
<=>a^2 -5a-24=0
<=>(a-8)(a+3)=0 <=> a-8=0 hoặc a+3=0 <=>a=8 hoặc a=-3
+) với a=8 => x^2 +2x-3=8 <=>x^2 +2x-11=0<=>(x+1)^2 -10=0 (vô nghiệm) vì (x+1)^2 >=0
+) với a=-3=>x^2 +2x-3=-3<=>x^2 +2x=0<=>x.(x+2)=0 <=> x=0 hoặc x+2=0 <=>x=0 hoặc x=-2
Vậy tập nghiệm của pt là S={0;-2}