\(\left(x-1\right)^2+3x.\left(x-2\right)=1\)

 b. 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

a. \(\left(x-1\right)^2+3x\left(x-2\right)=1\)

\(\Leftrightarrow x^2-2x+1+3x^2-6x-1=0\)

\(\Leftrightarrow4x^2-8x=0\)

\(\Leftrightarrow4x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

22 tháng 7 2017

a. \(\left(x-1\right)^2+3x.\left(x-2\right)=1\)

\(\Leftrightarrow x^2-2x+1+3x^2-6x-1=0\)       \(\Leftrightarrow4x^2-8x=0\)             \(\Leftrightarrow4x.\left(x-2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}4x=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { 0 ; 2 }

b)  \(x^3-7x-6=0\)        \(\Leftrightarrow x^3+2x^2-2x^2-4x-3x-6=0\)

\(\Leftrightarrow\left(x^3+2x^2\right)-\left(2x^2+4x\right)-\left(3x+6\right)=0\)      \(\Leftrightarrow x^2.\left(x+2\right)-2x.\left(x+2\right)-3.\left(x+2\right)=0\)

\(\Leftrightarrow\) \(\left(x+2\right).\left(x^2-2x-3\right)=0\)  \(\Leftrightarrow\)\(\left(x+2\right).\left[\left(x^2-2x+1\right)-4\right]=0\)

\(\Leftrightarrow\left(x+2\right).\left[\left(x-1\right)^2-2^2\right]=0\)   \(\Leftrightarrow\left(x+2\right).\left(x-1+2\right).\left(x-1-2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(x+1\right).\left(x-3\right)=0\)\(\Leftrightarrow\hept{\begin{cases}x+2=0\\x+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\x=-1\\x=3\end{cases}}\)

Vậy tập nghiệm của phương trình là S = { -2 ; -1 ; 3 }

1 tháng 4 2020

a) \(\frac{3}{7}x-1=\frac{1}{7}x\left(3x-7\right)\)

<=> \(3x-7=x\left(3x-7\right)\)

<=> \(\left(3x-7\right)-x\left(3x-7\right)=0\)

<=> \(\left(3x-7\right)\left(1-x\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)

Vậy S = { 7/3; 1}

b) \(\left(3x-1\right)\left(x^2+2\right)=\left(3x-1\right)\left(7x-10\right)\)

<=> \(\left(3x-1\right)\left(x^2+2-7x+10\right)=0\)

<=> \(\left(3x-1\right)\left(x^2-7x+12\right)=0\)

<=> \(\left(3x-1\right)\left(x^2-3x-4x+12\right)=0\)

<=> \(\left(3x-1\right)\left(x\left(x-3\right)-4\left(x-3\right)\right)=0\)

<=> \(\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

<=> x = 1/3 hoặc x = 3 hoặc x = 4.

Vậy S = { 1/3; 3; 4}

 

b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)

=>(7x+10)(x-3)=0

hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)

d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)

\(\Leftrightarrow x^2+14x+68=0\)

hay \(x\in\varnothing\)

6 tháng 4 2020

câu a, b, c dễ mà. Bạn áp dụng 7 hằng đẳng thúc là làm đc thoii!!

vd: a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Rightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=\left(3x+2\right)\left(x-1\right)\left(x+1\right)\)

\(\Rightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left(3x+2\right)\left(x+1\right)[\left(3x-2\right)-\left(x-1\right)]=0\)

\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\) (bạn phá ngoặc ra rồi tính là ra bước này)

\(\Leftrightarrow3x+2=0\) hoặc \(x+1=0\) hoặc \(2x-1=0\) ( đến đây bạn chia làm 3 trường hợp r tự tính nhé)

Chúc bạn học tốt!!

NV
6 tháng 4 2020

d/

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

e/

\(\Leftrightarrow x^3+x^2-6x-x^2-x+6=0\)

\(\Leftrightarrow x\left(x^2+x-6\right)-\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

13 tháng 3 2018

Áp dụng BĐT\(a^3+b^3+c^3=3abc\)  ta có                    (cái này bạn phải cm mới được áp dụng\(\left(x^2+3x-4\right)^3+\left(3x^3+7x+4\right)^3-\left(4x^2+10x\right)^3=-3\left(x^2+3x-4\right)\left(3x^3+7x+4\right)\left(4x^2+10x\right)=0\)

Sau đó bạn chia 3 trường hợp ra rồi giải pt tìm x

k mk nha

30 tháng 4 2018

\(\text{a) }\left(x^2-9\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x+3\right)^2\left(x-3\right)^2-9\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x+9-9\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left(x^2+6x\right)\left(x-3\right)^2=0\\ \Leftrightarrow x\left(x+6\right)\left(x-3\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x+6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=3\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{0;3;-6\right\}\)

\(\text{b) }\dfrac{3x^2+7x-10}{x}=0\\ ĐKXĐ:x\ne0\\ \Rightarrow3x^2+7x-10=0\\ \Leftrightarrow3x^2-3x+10x-10=0\\ \Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\\ \Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\\ \Leftrightarrow\left(3x+10\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x+10=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-10\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{10}{3}\\x=1\end{matrix}\right.\left(T/m\right)\)

Vậy phương trình có tập nghiệm \(S=\left\{-\dfrac{10}{3};1\right\}\)

\(\text{c) }x+\dfrac{2x+\dfrac{x-1}{5}}{3}=1-\dfrac{3x+\dfrac{1-2x}{3}}{5}\left(\text{Chữa đề}\right)\\ \Leftrightarrow15x+5\left(2x+\dfrac{x-1}{5}\right)=15-3\left(3x+\dfrac{1-2x}{3}\right)\\ \Leftrightarrow15x+10x+\left(x-1\right)=15-9x+\left(1-2x\right)\\ \Leftrightarrow15x+10x+x-1=15-9x+1-2x\\ \Leftrightarrow26x+11x=16+1\\ \Leftrightarrow37x=17\\ \Leftrightarrow x=\dfrac{17}{37}\\ \)

Vậy phương trình có nghiệm \(x=\dfrac{17}{37}\)