Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
Bài 1: Giải phương trình
a) ĐKXĐ: \(x\ge3\)
Ta có: \(\sqrt{100\cdot\left(x-3\right)}=\sqrt{20}\)
\(\Leftrightarrow\left|100\cdot\left(x-3\right)\right|=\left|20\right|\)
\(\Leftrightarrow100\cdot\left|x-3\right|=20\)
\(\Leftrightarrow\left|x-3\right|=\frac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\frac{1}{5}\\x-3=-\frac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{16}{5}\left(nhận\right)\\x=\frac{14}{5}\left(loại\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{16}{5}\right\}\)
b) Ta có: \(\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
Vậy: S={10;-4}
c) Ta có: \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5}{2};\frac{-7}{2}\right\}\)
a) \(x^3+1=2\sqrt[3]{2x-1}\) (1)
Đặt \(\sqrt[3]{2x-1}=a\Rightarrow a^3=2x-1\)
\(\Rightarrow1=2x-a^3\)
Phương trình (1) khi đó trở thành :
\(x^3+2x-a^3=2a\)
\(\Leftrightarrow\left(x^3-a^3\right)+2\left(x-a\right)=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+2\right)=0\)
\(\Leftrightarrow x=a\)
Do đó : \(x=\sqrt[3]{2x-1}\Leftrightarrow x^3-2x+1=0\)
\(\Leftrightarrow\left(x-1\right).\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
3xbình =(x+2) bình => 3x bình = x bìn+ 4 x +4 => 2x bình - 4x -4 =0 => 2. (x bình - 2x -1)=0
a) giải pt ra ta được : x=-1
b) giải pt ra ta được : x=2
c)giải pt ra ta được : x vô ngiệm
d)giải pt ra ta được : x=vô ngiệm
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
Đặt \(2x^2+3x=t\)ta có :
\(2\left(t+\frac{7}{2}\right)+\sqrt{t+9}=15\)
\(\Leftrightarrow2t+7+\sqrt{t+9}=15\)
\(\Leftrightarrow\sqrt{t+9}=8-2t\)
Bình phương 2 vế : \(t+9=4t^2-32t+64\)
\(\Leftrightarrow-4t^2+33t-55=0\)
Ta có : \(\Delta=33^2-4.\left(-4\right).\left(-55\right)=209\)
\(x_1=\frac{-33-\sqrt{209}}{-8};x_2=\frac{-33+\sqrt{209}}{-8}\)
Bài này nghiệm khá xấu mình gợi ý nhé !
ĐKXĐ : \(x\inℝ\)
Pt ban đầu có thể viết lại :
\(2.\left(2x^2+3x+9\right)+2\sqrt{2x^2+3x+9}=26\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>0\right)\)
Pt trên trở thành :
\(2.a^2+2a=26\)
\(\Leftrightarrow a^2+a-13=0\)
\(\Leftrightarrow a=\frac{-1\pm\sqrt{53}}{2}\)
Từ đây thì dễ dàng tính được x nhưng kết quả rất xấu.....