\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2022

\(\Rightarrow2x\cdot\left(64x^2-16x+1\right)\cdot\left(4x-1\right)=9\)

\(\Rightarrow\left(64x^2-16x+1\right)\cdot\left(8x^2-2x\right)=9\)

Nhân cả hai vế của phương trình với 8 ta được:

\(\left(64x^2-16x+1\right)\cdot\left(64x^2-16x\right)=72\)

Đặt \(a=64x^2-16x\left(a\ge1\right)\) (1)

\(\Rightarrow\left(a+1\right)\cdot a=72\)

\(\Rightarrow a^2+a-72=0\)

\(\Rightarrow\left(a-8\right)\cdot\left(a+9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=8\left(tmđk\right)\\a=-9\left(loại\right)\end{matrix}\right.\)

Thay vào (1) ta đc:

\(64x^2-16x=8\Rightarrow64x^2-16x-8=0\)

\(\Rightarrow\left(2x-1\right)\left(4x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

16 tháng 2 2022

2x(8x1)2(4x1)=92x(8x−1)2(4x−1)=9

(64x216x+1)(64x216x)=72⇔(64x2−16x+1)(64x2−16x)=72

Đặt 64x2 - 16x = t (t1)(t≥−1)

t(t+1)=72⇒t(t+1)=72

(t+9)(t8)=0⇔(t+9)(t−8)=0

[ t=9
t=8

⇔[t=−9(loai)t=8(nhan

64x216

14 tháng 2 2018

a ) \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)=42\)

Đặt \(x^2+x=t\), ta được :

\(t\left(t+1\right)=42\)

\(\Leftrightarrow t^2+t-42=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=6\\t=-7\end{matrix}\right.\)

Khi t = 6, ta được :

\(x^2+x-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Khi t = -7, ta được :

\(x^2+x+7=0\)

\(\Leftrightarrow\left[x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{27}{4}=0\) ( Vô lí )

Vậy ...

9 tháng 2 2017

Làm cho bạn 1 con thôi dài quá trôi hết màn hình:

c) có vẻ khó nhất (con khác tương tự)

đặt 2x+2=t=> x+1=t/2

\(\left(t-1\right).\left(\frac{t}{2}\right)^{^2}.\left(t+1\right)=18\Leftrightarrow\left(t^2-1\right)t^2=4.18\)

\(t^4-t^2=4.18\Leftrightarrow y^2-2.\frac{1}{2}y+\frac{1}{4}=4.18+\frac{1}{4}=\frac{16.18+1}{4}=\left(\frac{17}{2}\right)^2\)

<=> \(\left(y-\frac{1}{2}\right)^{^2}=\left(\frac{17}{2}\right)^2\Rightarrow\left[\begin{matrix}y=\frac{1}{2}-\frac{17}{2}=-8\\y=\frac{1}{2}+\frac{17}{2}=9\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x+2=-8\Rightarrow x=-5\\2x+2=9\Rightarrow x=\frac{7}{2}\end{matrix}\right.\)

26 tháng 2 2018

Câu a:

\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)

\(\Leftrightarrow\left(64x^2-16x+1\right)\left(64x^2-16x\right)=72\)

Đặt 64x2 - 16x = t \(\left(t\ge-1\right)\)

\(\Rightarrow t\left(t+1\right)=72\)

\(\Leftrightarrow\left(t+9\right)\left(t-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-9\left(loai\right)\\t=8\left(nhan\right)\end{matrix}\right.\)

\(\Rightarrow64x^2-16x=8\)

\(\Leftrightarrow8\left(2x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Câu b:

\(\Leftrightarrow\left(x+1\right)^2\left(2x+1\right)\left(2x+3\right)=18\)

\(\Leftrightarrow\left(4x^2+8x+4\right)\left(4x^2+8x+3\right)=72\)

Đặt 4x2 + 8x + 4 = m \(\left(m\ge0\right)\)

\(\Rightarrow m\left(m-1\right)=72\)

\(\Leftrightarrow\left(m-9\right)\left(m+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=9\left(nhan\right)\\m=-8\left(loai\right)\end{matrix}\right.\)

\(\Rightarrow4\left(x+1\right)^2=9\)

\(\Leftrightarrow x+1=\pm\dfrac{3}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

5 tháng 4 2016

sử dụng pr đặt ẩn phụ là ra

5 tháng 4 2016

pr là gì vậy bạn ? 

7 tháng 3 2020

a) \(pt\Leftrightarrow\frac{6}{x^2+2}-1+\frac{7}{x^2+3}-1+\frac{12}{x^2+8}-1-\frac{3x^2+16}{x^2+10}+2=0\)

\(\Leftrightarrow\frac{4-x^2}{x^2+2}+\frac{4-x^2}{x^2+3}+\frac{4-x^2}{x^2+8}+\frac{4-x^2}{x^2+10}=0\)

\(\Leftrightarrow\left(4-x^2\right)\left(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}\right)=0\)

\(\Leftrightarrow4-x^2=0\)(do \(\frac{1}{x^2+2}+\frac{1}{x^2+3}+\frac{1}{x^2+8}+\frac{1}{x^2+10}>0,\forall x\))

\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

\(KL...\)

7 tháng 3 2020

2x(8x - 1)2(4x - 1) = 9

<=> 512x4 - 256x3 + 40x2 - 2x = 9

<=> 512x4 - 256x3 + 40x2 - 2x - 9 = 0

<=> (2x - 1)(4x + 1)(64x4 - 16x + 9) = 0

vì 64x4 - 16x + 9 khác 0 nên:

<=> 2x - 1 = 0 hoặc 4x + 1 = 0

<=> x = 1/2 hoặc x = -1/4

22 tháng 9 2018

      \(\left(4x-5\right)^2\left(2x-3\right)\left(x-1\right)=9\)

\(\Leftrightarrow\left(4x-5\right)^2\left(2x-3\right).2.\left(x-1\right).4=9.2.4\)

\(\Leftrightarrow\left(4x-5\right)^2\left(4x-6\right)\left(4x-4\right)=72\)(1)

Đặt \(4x-5=a\)

Khi đó (1) trở thành: 

      \(a^2\left(a-1\right)\left(a+1\right)=72\)

\(\Leftrightarrow a^2\left(a^2-1\right)=72\)    

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow a^4-9a^2+8a^2-72=0\)

\(\Leftrightarrow a^2\left(a^2-9\right)+8\left(a^2-9\right)=0\)

\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0\)

\(\Leftrightarrow a^2-9=0\) (vì \(a^2+8>0\forall a\) )

\(\Leftrightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

- Với \(a=3\Rightarrow4x-5=3\Rightarrow x=2\)

-Với \(a=-3\Rightarrow4x-5=-3\Rightarrow x=\frac{1}{2}\)

Vậy \(x=2,x=\frac{1}{2}\)

Chúc bạn học tốt.

28 tháng 2 2019

Câu hỏi của Do Xuan Dat - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé! 

23 tháng 2 2018

\(\Leftrightarrow8x\left(8x-1\right)^2\left(8x-2\right)=72.\)(nhân cả 2 vế vs 8)

Đặt \(a=8x-1.\)ta có pt

\(\left(a-1\right)a^2\left(a+1\right)=72\)

\(\Leftrightarrow a^4-a^2-72=0\)

\(\Leftrightarrow\left(a^2-9\right)\left(a^2+8\right)=0.\)

\(\Rightarrow\left(a-3\right)\left(a+3\right)=0\)(do \(a^2+8\ne0.\))

\(\Rightarrow\orbr{\begin{cases}a=3\\a=-3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}8x-1=3\\8x-1=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0.5\\x=-0.25\end{cases}}\)

vậy, \(S=\left\{0.5;-0.25\right\}.\)

xong rồi đó bn

31 tháng 5 2017

ko có dấu cộng hay dấu trừ j ak

15 tháng 5 2018

a)\(3\left(x^4+x^2+1\right)=\left(x^2+x+1\right)^2\)

Cauchy-schwarz:

\(\left(1+1+1\right)\left(x^4+x^2+1\right)\ge\left(x^2+x+1\right)^2\)

"="<=>\(x=1\)

b)\(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

\(x^2+x-1=t\)

\(\Rightarrow\left(t-1\right)\left(t+1\right)=24\)

\(\Leftrightarrow t^2-25=0\)

\(\Leftrightarrow t=\pm5\)

t=5\(\Leftrightarrow x^2+x-1=5\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

t=-5<=> pt vô nghiệm