Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow14\sqrt{x+35}+6\sqrt{x+1}-84-\sqrt{\left(x+35\right)\left(x+1\right)}=0\)
\(\Leftrightarrow\left(\sqrt{x+35}-6\right)\left(14-\sqrt{x+1}\right)=0\)
\(\Leftrightarrow x=195;1\)
tick nha
ĐK: \(x\ge-1\)
pt <=> \(\left(14\sqrt{x+35}-84\right)+\left(6\sqrt{x+1}-\sqrt{x^2+36x+35}\right)=0\)
<=> \(14\left(\sqrt{x+35}-6\right)+\sqrt{x+1}\left(6-\sqrt{x+35}\right)=0\)
<=> \(\left(\sqrt{x+35}-6\right)\left(11-\sqrt{x+1}\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x+35}-6=0\\11-\sqrt{x+1}=0\end{cases}}\)Em làm tiếp nhé!
<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)
b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)
<=>\(2\sqrt{2}^x+2=6\)
<=>x=2
Câu 1, \(\left(1\right)\hept{\begin{cases}\sqrt[4]{x^3}+\sqrt[5]{y^3}=35\\\sqrt[4]{x}+\sqrt[5]{y}=5\end{cases}}\)
ĐKXĐ: x > 0
Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\left(a\ge0\right)\\\sqrt[5]{y}=b\end{cases}}\)
Hệ ban đầu trở thành
\(\hept{\begin{cases}a^3+b^3=35\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(a^2-ab+b^2\right)=35\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5.\left[\left(a+b\right)^2-3ab\right]=35\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)^2-3ab=7\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}25-3ab=7\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}ab=6\\a+b=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\left(5-a\right)=6\\b=5-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5a-a^2=6\\b=5-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a^2-5a+6=0\\b=5-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a-3\right)\left(a-2\right)=0\\b=5-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=3\\b=2\end{cases}\left(h\right)\hept{\begin{cases}a=2\\b=3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt[4]{x}=3\\\sqrt[5]{y}=2\end{cases}}\left(h\right)\hept{\begin{cases}\sqrt[4]{x}=2\\\sqrt[5]{y}=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=81\\y=32\end{cases}\left(h\right)\hept{\begin{cases}x=16\\y=243\end{cases}}}\)(Thỏa mãn)
Vậy
2/ Đặt \(\hept{\begin{cases}\sqrt{x}=a\ge0\\\sqrt{1-x}=b\ge0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^3+b^3=a+2b\\a^2+b^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(a^2+b^2-ab\right)=a+2b\\a^2+b^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(a+b\right)\left(1-ab\right)=a+2b\\a^2+b^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b\left(a^2+ab+1\right)=0\\a^2+b^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=0\\a^2+b^2=1\end{cases}}\)
Bí