K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4

3 - 4x(25 - 2x) = 8x² + x - 300

3 - 100x + 8x² = 8x² + x - 300

-100x + 8x² - 8x² - x = -300 - 3

-101x = -303

x = -303 : (-101)

x = 3

Vậy S = {3}

30 tháng 5 2018

a)Thay m=-2 vào biểu thức ta có:

\(\left(2.-2\right)\left(x+3\right)=-\left(-2\right)x+5\)

\(\Leftrightarrow-4\left(x+3\right)=4x+5\)

\(\Leftrightarrow-4x-12=4x+5\)

\(\Leftrightarrow-4x-4x=12+5\)

\(\Leftrightarrow-8x=17\)

\(\Leftrightarrow x=\dfrac{-17}{8}\)

Nếu m=-2 thì \(x=\dfrac{-17}{8}\)

còn m=\(\dfrac{1}{2}\) thì bạn làm tương tự

mấy câu kia lát mình làm sau giờ mình bận rồi

30 tháng 5 2018

a/ +) Với m = -2 ta có:

\(\left(2\cdot\left(-2\right)-1\right)\left(x+3\right)=-\left(-2x\right)+5\)

\(\Leftrightarrow-5\left(x+3\right)=2x+5\Leftrightarrow-5x-2x=5+15\)

\(\Leftrightarrow-7x=20\Leftrightarrow x=-\dfrac{20}{7}\)

Vậy khi m = -2 thì x = -20/7

+) Với m = 1/2 ta có:

\(\left(2\cdot\dfrac{1}{2}-1\right)\left(x+3\right)=-\dfrac{1}{2}x+5\)

\(\Leftrightarrow\dfrac{1}{2}x=5\Leftrightarrow x=10\)

Vậy khi m = 1/2 thì x = 10

b/ pt có nghiệm = -2

=> \(2m-1=2m+5\Leftrightarrow0\cdot m=6\left(voli\right)\)

Vậy không có gt của m nào t/m để pt có nghiệm x = -2

c/ (2m-1)(x+3) = -mx + 5

\(\Leftrightarrow2mx+6m-x+mx-3=5\)

\(\Leftrightarrow3mx-x=5-6m+3\)

\(\Leftrightarrow x\left(3m-1\right)=-6m+8\Leftrightarrow x=\dfrac{-6m+8}{3m-1}\)

25 tháng 2 2019

a) Thay a = -1 vào phương trình

\(\dfrac{x-1}{x+3}+\dfrac{x-3}{x+1}=2\)

\(\Rightarrow\dfrac{x^2-1+x^2-9}{\left(x+3\right)\left(x+1\right)}=2\)

\(\Rightarrow2x^2-10=2\left(x+3\right)\left(x+1\right)=2x^2+8x+6\)

\(\Rightarrow2x^2+8x+6-2x^{10}+10=0\)

\(\Rightarrow8x+16=0\Rightarrow x=-2\)

b, c Làm tương tự như câu a

d)

Phương trình nhận x = 1 làm nghiệm

=> \(\dfrac{1+a}{1+3}+\dfrac{1-3}{1-a}=2\)

\(\Rightarrow\dfrac{a+1}{4}+\dfrac{2}{a-1}=2\)

\(\Rightarrow\dfrac{a^2-1+8}{4\left(a-1\right)}=2\)

\(\Rightarrow a^2+7=2\left(4a-1\right)=8a-2\)

\(\Rightarrow a^2-8x+9=0\)

\(\Rightarrow\left[{}\begin{matrix}a=4+\sqrt{7}\\a=4-\sqrt{7}\end{matrix}\right.\)

25 tháng 2 2019

Math processing error rồi :<

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

2 tháng 3 2018

a. Ta có: x+2-m(3x+1)=5

\(\Leftrightarrow\)x(1-3m)-3-m=0 (1)

Để pt trên là pt bậc nhất thì (1-3m) khác 0

\(\Rightarrow m\ne\dfrac{1}{3}\)

b. Thay m=1 vào (1) ta có:

x(1-3.1)-3-1=0

\(\Leftrightarrow\) x=-2

10 tháng 5 2022

a, ĐKXĐ : x ≠ 4

b,

\(\Leftrightarrow3x+2=2\left(x-4\right)\)

\(\Leftrightarrow3x+2=2x-8\)

\(\Leftrightarrow x=-10\) (N)

Vậy : ...

10 tháng 5 2022

`a)` Ptr xác định `<=>x-4 \ne 0<=>x \ne 4`

`b)[3x+2]/[x-4]=2`         `ĐK: x \ne 4`

`<=>3x+2=2(x-4)`

`<=>3x+2=2x-8`

`<=>3x-2x=-8-2`

`<=>x=-10` (t/m)

Vậy `S={-10}`

8 tháng 2 2018

a. Với a = -3 ta được:

\(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}+\dfrac{27-3}{x^2-9}=0\)

\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{24}{\left(x-3\right)\left(x+3\right)}=0\)

\(\Leftrightarrow x^2+6x+9-x^2+6x-9+24=0\)

\(\Leftrightarrow12x+24=0\)

\(\Leftrightarrow x=-2\)

8 tháng 2 2018

Giải phương trình :

\(\dfrac{x-a}{x+a}-\dfrac{x+a}{x-a}+\dfrac{3a^2+a}{x^2-a^2}=0\)

a) Với a = -3

\(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}=0\)

ĐKXĐ : \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)

Ta có : \(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}\)

\(\Leftrightarrow\) \(\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{27+3}{\left(x+3\right)\left(x-3\right)}=0\)

Khử mẫu ta có : \(\left(x-3\right)^2-\left(x+3\right)^2+27+3=0\)

\(x^2+6x+9-x^2+6x-9+30=0\)

\(\Leftrightarrow12x+30=0\)

\(\Leftrightarrow12x=-30\)

\(\Leftrightarrow x=-\dfrac{5}{2}\)

Tập nghiệm của pt là: \(S=\left\{-\dfrac{5}{2}\right\}\)

b) Với a = 1

\(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)

ĐKXĐ : \(\left\{{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne1\end{matrix}\right.\)

Ta có : \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)

\(\Leftrightarrow\) \(\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3+3}{\left(x+1\right)\left(x-1\right)}=0\)

Khử mẫu ta có : \(\left(x-1\right)^2-\left(x+1\right)^2+6=0\)

\(\Leftrightarrow x^2+x-1-x^2+x+1+6=0\)

\(\Leftrightarrow2x+6=0\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

Tập nghiệm của pt là : \(S=\left\{-3\right\}\)

1 tháng 5 2018

Bài 1 :

a) \(a\ne x\)

b) Tại a= 2 PT

\(\Leftrightarrow\left(5.2-8\right)x=2014\)

\(\Leftrightarrow2x=2014\)

\(\Leftrightarrow x=1007\) 

Vậy tập nghiệm của phương trình đã cho khi a=2 là \(S=\left(1007\right)\)

Bài 2 

Ta có :\(f\left(x\right)=2x^2-12x+14\)

                   \(=2\left(x^2-6x+9\right)-4\)

                \(=2\left(x-3\right)^2-4\ge-4\)

Dấu \("="\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy GTNN của \(f\left(x\right)\)là \(-4\)khi \(x=3\)

Nhớ K cho tớ nhé

25 tháng 2 2018

Điều kiện a để phương trình là phương trình bậc nhất là : a # 0

Với a = -3 , pt có dạng :

-9x - 1 - 3 = 0

<=> -9x = 4

<=> x = \(\dfrac{-4}{9}\)

Vậy,....