Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sin3x + cos3x = sin2x + 1 + sinx + cosx
⇔ (sinx + cosx)(sin2x + cos2x - sinx.cosx) = 2sinxcosx + sin2x + cos2x + sinx + cosx
⇔ (sinx + cosx)(1 - sinx . cosx) = (sinx + cosx)2 + (sinx + cosx)
⇔ (sinx + cosx)(1 - sinx.cosx - sinx - cosx - 1) = 0
⇔ (sinx + cosx)(sinx + cosx + sinx.cosx) = 0
⇔ \(\left[{}\begin{matrix}sinx+cosx=0\left(1\right)\\sinx+cosx+sinx.cosx=0\left(2\right)\end{matrix}\right.\)
(1) ⇔ \(\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\)
⇔ \(x+\dfrac{\pi}{4}=k\pi\)
⇔ \(x=-\dfrac{\pi}{4}+k\pi\)
(2) ⇔ \(\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+\dfrac{1}{2}sin2x=0\)
⇔ \(\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)-\dfrac{1}{2}cos\left(2x+\dfrac{\pi}{2}\right)=0\)
⇔ \(\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)-\dfrac{1}{2}.\left[1-2sin^2\left(x+\dfrac{\pi}{4}\right)\right]=0\)
⇔ \(\dfrac{1}{4}sin^2\left(x+\dfrac{\pi}{4}\right)+\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)-\dfrac{1}{2}=0\)
⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{10}-2\sqrt{2}\\sin\left(x+\dfrac{\pi}{4}\right)=-\sqrt{10}-2\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{10}-2\sqrt{2}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k\pi\\x\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\frac{1-\frac{sinx}{cosx}}{1+\frac{sinx}{cosx}}=1+sin2x\)
\(\Leftrightarrow\frac{cosx-sinx}{cosx+sinx}=1+sin2x\)
\(\Leftrightarrow cosx-sinx=\left(cosx+sinx\right)\left(1+sin2x\right)\)
\(\Leftrightarrow cosx.sin2x+2sinx+sinx.sin2x=0\)
\(\Leftrightarrow cos^2x.sinx+sinx+sin^2x.cosx=0\)
\(\Leftrightarrow sinx\left(cos^2x+sinx.cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\Rightarrow x=k\pi\\cos^2x+sinx.cosx+1=0\left(1\right)\end{matrix}\right.\)
Xét (1), chia 2 vế cho \(cos^2x\) ta được:
\(1+tanx+1+tan^2x=0\)
\(\Leftrightarrow tan^2x+tanx+2=0\) (vô nghiệm)
1 + sinx + cosx + sin2x + cos2x = 0
sinx + cosx + 1 + 2sinxcosx + cos²x - sin²x = 0
sinx + cosx + (1 + 2sinxcosx) + (cos²x - sin²x) = 0
(sinx + cosx) + (sinx + cosx)² + (cosx + sinx)(cosx - sinx) = 0
(sinx + cosx)(1 + sinx + cosx + cosx - sinx) = 0
(sinx + cosx)(1 + 2cosx) = 0
sinx + cosx = 0 hoặc 1 + 2cosx = 0
(a) sinx + cosx = 0 ⇒ tanx + 1 = 0 ⇒ tanx = -1 ⇒ x = 3π/4 + kπ, (k ∈ Z)
(b) 1 + 2cosx = 0 ⇒ cosx = -1/2 = cos(2π/3) ⇒ x = ±2π/3 + k 2π, (k ∈ Z)
Điều kiện : sinx \(\ge\) 0
PT <=> 1 - cosx = sin2x <=> 1 - cosx = 1 - cos2x <=> (1 - cosx) - (1 - cos x).(1 + cosx) = 0
<=> (1 - cosx). cosx = 0 <=> cos x =1 hoặc cosx = 0
+) cosx = 0 <=> x = \(\frac{\pi}{2}+k\pi\) ; x \(\in\left[\pi;3\pi\right]\) => \(\pi\le\frac{\pi}{2}+k\pi\le3\pi\) <=> 1 \(\le\) 1/2 + k \(\le\) 3 <=> 1/2 \(\le\) k \(\le\) 2,5 ; k nguyên nên k = 1;2
=> x = \(\frac{3\pi}{2};\frac{5\pi}{2}\) đối chiếu đk sinx \(\ge\) 0 => x = \(\frac{5\pi}{2}\)
+) cosx = 1 <=> x = \(k2\pi\) ; x \(\in\left[\pi;3\pi\right]\) => x = \(2\pi\) (T/m đk sinx\(\ge\) 0)
Vậy PT có nghiệm là x = \(\frac{5\pi}{2}\); x = \(2\pi\)
ta có sin2(2x)=4sin2xcos2x=4sin2x(1-sin2x)=4sin2x-4sin4x
sin2(3x)=16sin6x-24sin4x+9sin2x=>16sin6x-24sin4x+9sin2x+4sin2x-4sin4x=6
Đặt sin2x=a ta có 16a3-28a2+13a=6
giải tiếp....
sin2x + sin22x + sin23x = 2
⇔ sin22x = 1 - sin2x + 1 - sin23x
⇔ sin22x = cos2x + cos23x
⇔ \(\dfrac{1-cos4x}{2}=\dfrac{1+cos2x}{2}+\dfrac{1+cos6x}{2}\)
⇔ 1 - cos4x = 2 + cos2x + cos6x
⇔ cos2x + cos6x + cos4x + 1 = 0
⇔ 2cos4x . cos2x + 2cos22x = 0
⇔ \(\left[{}\begin{matrix}cos2x=0\\cos4x+cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\2cos3x.cosx=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}cos2x=0\\cos3x=0\end{matrix}\right.\). Còn lại tự giải nhé !!