Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a )Thế \(m=1\) vào phương trình ta được :
\(2x^2-3x-2=0\)
\(\Leftrightarrow2x^2+x-4x-2=0\)
\(\Leftrightarrow x\left(2x+1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-\frac{1}{2};2\right\}\)
b ) Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\frac{6m-3}{2}\\x_1x_2=\frac{-3m+1}{2}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\frac{6m-3}{2}\right)^2-\frac{2\left(-3m+1\right)}{2}\)
\(=\frac{36m^2-36m+9}{4}+3m-1\)
\(=\frac{36m^2-36m+9+12m-4}{4}\)
\(=\frac{36m^2-24m+5}{4}\)
\(=\frac{36m^2-24m+4+1}{4}\)
\(=\frac{\left(6m-2\right)^2+1}{4}\ge\frac{1}{4}\)
Vậy GTNN của A là \(\frac{1}{4}\) . Dấu bằng xảy ra khi \(x=\frac{1}{3}\)
\(\Leftrightarrow x^2-2x+2-\left(x+2\right)\sqrt{x^2-2x+2}+3x-3=0\)
Đặt \(\sqrt{x^2-2x+2}=a>0\)
\(\Rightarrow a^2-\left(x+2\right)a+3x-3=0\)
\(\Delta=\left(x+2\right)^2-4\left(3x-3\right)=\left(x-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}a=\dfrac{x+2+x-4}{2}=x-1\\a=\dfrac{x+2-\left(x-4\right)}{2}=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-2x+2}=x-1\left(vn\right)\\\sqrt{x^2-2x+2}=3\end{matrix}\right.\)
\(\Rightarrow x^2-2x-7=0\)
thầy ơi máy tính em bị lỗi hay sao mà ra nghiệm 8950000 vậy ạ?
a: Ta có: \(\sqrt{x^2}=x\)
\(\Leftrightarrow\left|x\right|=x\)
hay \(x\ge0\)
b: Ta có: \(\sqrt{x^2-4x+4}=x-2\)
\(\Leftrightarrow\left|x-2\right|=x-2\)
\(\Leftrightarrow x\ge2\)
\(\sqrt{x^2}=x\Leftrightarrow\left|x\right|=x\Leftrightarrow x\ge0\)
\(\sqrt{x^2-4x+4}=x-2\left(x\in R\right)\\ \Leftrightarrow\left|x-2\right|=x-2\\ \Leftrightarrow x-2\ge0\Leftrightarrow x\ge2\)
https://coccoc.com/search/math#query=gi%E1%BA%A3i+pt+(2x-2)%2F(x%5E2-36)+-+(x-2)%2F(x%5E2-6x)+%3D+(x-1)%2F(x%5E2%2B6x)
`(x^2-x)(x^2-x+1)=6`
Đặt `a=x^2-x(x>=-1/4)`
`pt<=>a(a+1)=6`
`<=>a^2+a-6=0`
`Delta=1+24=25`
`=>a_1=-2(l),a_2=1(tm)`
`<=>x^2-x=1`
`<=>x^2-x-1=0`
`Delta=1+4=5`
`=>x_{12}=(+-sqrt5+1)/2`
\(\left(x^2-x\right)\left(x^2-x+1\right)=6\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x^2-x\right)-6=0\)
\(\Leftrightarrow\left[\left(x^2-x\right)-2\right]\left[\left(x^2-x\right)+3\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
`x^2 + 2(m-1)x + m^2 = 0`
Thay `m=0` vào pt và giải ta được :
`x^2 - 6x + 16 = 0`
Vì `x^2 - 6x + 16 > 0` với mọi `x`
`=>` vô nghiệm
Vậy `S = RR`
Thay `m=-4` vào pt và giải ta được :
`x^2 + 10x + 16 = 0`
`\Delta = 10^2 - 4*1*16 = 36 > 0`
`=> \sqrt{\Delta} = 6`
`=>` Phương trình có 2 nghiệm phân biệt :
`x_1 = (-10+6)/(2*1) = -2`
`x_2 = (-10-6)/(2*1) = -8`
Vậy `S = {-2,-8}`
\(x+\dfrac{x}{x^2-2}=2+\dfrac{2}{x}\)
=>\(x^2\left(x^2-2\right)+x^2=2x\left(x^2-2\right)+2x^2-4\)
=>x^4-x^2=2x^3-4x+2x^2-4
=>x^4-2x^3-3x^2+4x+4=0
=>(x-2)^2*(x+1)^2=0
=>x=2 hoặc x=-1