K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2019

.\(đk:x\ge4\)               \(x+\sqrt{x}+1+\left(2\sqrt{5}-1\right)\sqrt{x}=3x-2\sqrt{x-4}.\)  

          \(\Leftrightarrow(x-2\sqrt{5}.\sqrt{x}+5)+[(x-4)-2\sqrt{x-4}+1]=-3.\) 

            \(\Leftrightarrow[\sqrt{x}-\sqrt{5}]^2+[\sqrt{x-4}-1]^2=-3.\) 

Phương trình vô nghiệm

24 tháng 7 2017

\(VT\ge0=>VP=4-2x\ge0=>x\le2.=>ĐK:2\ge x\ge1.\)
\(\sqrt{x-1}+\sqrt{x+3}-\left(4-2x\right)+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=0.\)
\(\sqrt{x-1}\left(1+\frac{13-4x}{\sqrt{x+3}+\left(4-2x\right)}+2\sqrt{x^2-3x+5}\right)=0.\)
\(Vi:2\ge x\ge1< =>-8\le-4x\le-4< =>5\le13-4x\le9=>13-4x>0\)=> Cái trong kia >0 
=> x=1.

24 tháng 7 2017

\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)

Điều kiện: \(x\ge1\)

\(\hept{\begin{cases}VT=\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}\ge0+2+0=2\\VP=4-2x\le4-2=2\end{cases}}\)

Dấu =  xảy ra khi \(x=1\)

29 tháng 5 2019

ĐK: \(x\ge1\)

Đặt\(\left\{{}\begin{matrix}\sqrt{x+4}=a\\\sqrt{x-1}=b\end{matrix}\right.\)\(\left(a\ge\sqrt{5},b\ge0\right)\)

\(\Rightarrow a^2-b^2=5\)\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=5\)(1)

Mặt khác,\(PT\Leftrightarrow\)\(\left(a-b\right)\left(ab+1\right)=5\)(2)

Lấy \(\left(2\right)-\left(1\right)\Rightarrow\) \(\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=b\\a=1\left(l\right)\\b=1\left(tm\right)\end{matrix}\right.\)

Đến đây không biết giải tiếp, anh lo nhé :D

4 tháng 9 2015

\(ĐKx\ge1\)

VT \(\ge\sqrt{1-1}+\sqrt{1+3}+2\sqrt{\left(1-1\right)\left(1^2-3.1+5\right)}=0+2+0=2\)

VP \(\le4-2.1=2\)

=> VT = VP = 2 

Vậy x = 1