\(x^4+\sqrt{x^2+2}=2\)

giải giúp mình gấp nhé !

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2021

\(x^4+\sqrt{x^2+2}=2\)

Đặt t = x2 

pt <=> \(t^2+\sqrt{t+2}=2\)

<=> \(\sqrt{t+2}=2-t^2\)( 0 ≤ t ≤ √2 )

Bình phương hai vế

<=> t + 2 = t4 - 4t2 + 4

<=> t4 - 4t2 - t + 2 = 0

<=> t4 - 2t3 + 2t3 - 4t2 - t + 2 = 0

<=> t3( t - 2 ) + 2t2( t - 2 ) - ( t - 2 ) = 0

<=> ( t - 2 )( t3 + 2t2 - 1 ) = 0

<=> ( t - 2 )( t3 + t2 + t2 - 1 ) = 0

<=> ( t - 2 )[ t2( t + 1 ) + ( t - 1 )( t + 1 ) ] = 0

<=> ( t - 2 )( t + 1 )( t2 + t - 1 ) = 0

<=> t - 2 = 0 hoặc t + 1 = 0 hoặc t2 + t - 1 = 0

<=> t = \(\frac{-1+\sqrt{5}}{2}\)( đã loại các nghiệm ktm )

=> \(x^2=\frac{-1+\sqrt{5}}{2}\Leftrightarrow x=\pm\sqrt{\frac{-1+\sqrt{5}}{2}}\)

Vậy ...

19 tháng 3 2021

ai kb vs mình ko

9 tháng 8 2017

a)\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

\(pt\Leftrightarrow\sqrt{3x^2+6x+3+4}+\sqrt{5x^2+10x+5+9}=-x^2-2x+4\)

\(\Leftrightarrow\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+9}=-x^2-2x+4\)

\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}=-x^2-2x+4\)

Dễ thấy: \(\hept{\begin{cases}3\left(x+1\right)^2\ge0\\5\left(x+1\right)^2\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(x+1\right)^2+4\ge4\\5\left(x+1\right)^2+9\ge9\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{3\left(x+1\right)^2+4}\ge2\\\sqrt{5\left(x+1\right)^2+9}\ge3\end{cases}}\)

\(\Rightarrow VT=\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+9}\ge2+3=5\)

Và \(VP=-x^2-2x+4=-x^2-2x-1+5\)

\(=-\left(x^2+2x+1\right)+5=-\left(x+1\right)^2+5\le5\)

SUy ra \(VT\ge VP=5\Leftrightarrow x=-1\)

b)\(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)

\(pt\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}-\sqrt{x-1}=1\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2-\sqrt{x-1}=1\)

..... giải nốt tiếp ra x=1

c)Sửa đề \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)

ĐK:....

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{x-7}+\sqrt{9-x}\right)^2\)

\(\le\left(1+1\right)\left(x-7+9-x\right)=4\)

\(\Rightarrow VT^2\le4\Rightarrow VT\le2\)

Lại có: \(VP=x^2-16x+66=x^2-16x+64+2\)

\(=\left(x-8\right)^2+2\ge2\)

Suy ra \(VT\ge VP=2\) khi \(VT=VP=2\)

\(\Rightarrow\left(x-8\right)^2+2=2\Rightarrow x-8=0\Rightarrow x=8\)

7 tháng 9 2020

+) ĐKXĐ : \(x\ge-1\)

 \(\sqrt{x+1}+13=17\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(TM\right)\)

+) ĐKXĐ : \(x\ge\frac{1}{2}\)

\(\sqrt{2x-1}=x+2\)

\(\Leftrightarrow2x-1=x^2+4x+4\)

\(\Leftrightarrow2x-x^2-4x-1-4=0\)

\(\Leftrightarrow-2x-x^2-5=0\)

\(\Leftrightarrow-\left(x^2+2x+1+4\right)=0\)

\(\Leftrightarrow-\left(x+1\right)^2=4\)

Vậy phương trình vô nghiệm

+) ĐKXĐ : với mọi x

\(\sqrt{x^2-6x+9}=x+1\) 

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+1\)

\(\Leftrightarrow\left|x-3\right|=x+1\)

Giải nốt

7 tháng 9 2020

\(\sqrt{x+1}+13=17\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\)

\(\sqrt{2x-1}=x+2\)

\(\Leftrightarrow2x-1=x^2+4x+4\)

\(\Leftrightarrow-x^2-2x-5=0\)

\(\Leftrightarrow x^2+2x+5=0\)

có lẽ sai đề hoặc mình sai bạn kt lại phần này hộ

\(\sqrt{x^2-6x+9}=x+1\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=x+1\)

\(\Leftrightarrow x-3=x+1\)

\(\Rightarrow\)x không tồn tại

13 tháng 6 2016

\(x^2+4x-7=\left(x+4\right)\sqrt{x^2-7}\)(ĐKXĐ;: \(x\ge\sqrt{7}\)hoặc \(x\le-\sqrt{7}\))

\(\Leftrightarrow x^2+4x-7=x\sqrt{x^2-7}+4\sqrt{x^2-7}\)

\(\Leftrightarrow\left(x^2-7-x\sqrt{x^2-7}\right)+\left(4x-4\sqrt{x^2-7}\right)=0\)

\(\Leftrightarrow\sqrt{x^2-7}\left(\sqrt{x^2-7}-x\right)-4\left(\sqrt{x^2-7}-x\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2-7}-4\right)\left(\sqrt{x^2-7}-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-7}-4=0\\\sqrt{x^2-7}-x=0\end{cases}}\)

  • Nếu \(\sqrt{x^2-7}-4=0\Leftrightarrow x^2-7=16\Leftrightarrow x^2=23\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{23}\\x=\sqrt{23}\end{cases}}\)(thoả mãn)
  • Nếu \(\sqrt{x^2-7}-x=0\Leftrightarrow x^2-7=x^2\Leftrightarrow-7=0\)(Vô lí)

Vậy tập nghiệm của phương trình : \(S=\left\{-\sqrt{23};\sqrt{23}\right\}\)

4 tháng 7 2016

= 3-x +4can 3-x +4 +x =13

4căn 3-x = 6

16(3-x) = 36

48-36 = 16x

x = 16/12 = 4/3

4 tháng 7 2016

ôi xl 

x = 12/16 =3/4

24 tháng 7 2017

a,  \(\Leftrightarrow\sqrt{\left(3-2x\right)^2=4+x}\)

\(\Leftrightarrow\left|3-2x\right|=4+x\)

\(\Leftrightarrow\orbr{\begin{cases}3-2x=4+x\\3-2x=-4-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=-1\\x=7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=\sqrt{7}\\x=-\sqrt{7}\end{cases}}\\\left(x-3\right)\left(x-1\right)=0\end{cases}}\)

24 tháng 9 2016

1, x=5 bình phương các vế lên rồi giải