\(x^3+x-7=\sqrt{x^2+5}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

pt :\(x^3+x-7=\left(\sqrt{x^2+5}\right)\Leftrightarrow x^3+x-10=\left(\sqrt{x^2+5}\right)-3\)

\(\left(x-2\right)\left(x^2+2x+5\right)=\frac{x^2+5-9}{\left(\sqrt{x^2+5}+3\right)}\Leftrightarrow\left(x-2\right)\left(x^2+2x+5-\frac{x+2}{\left(\sqrt{x^2+5}+3\right)}\right)=0\)

Thành hai th: x=2 hoặc \(x^2+2x+5-\frac{x+2}{\left(\sqrt{x^2+5}+3\right)}=0\Leftrightarrow x^2+2x+5=\frac{x+2}{\left(\sqrt{x^2+5}+3\right)}\)

 

 

 

1 tháng 12 2019

\(đkxđ\Leftrightarrow\hept{\begin{cases}x-5\ge0\Rightarrow x\ge5\\7-x\ge0\Rightarrow x\le7\end{cases}\Rightarrow5\le x\le7}\)

Ta có :

\(\sqrt{x-5}+\sqrt{7-x}=2.\)

\(\Rightarrow\left(\sqrt{x-5}+\sqrt{7-x}\right)^2=2^2\)

\(\Rightarrow\sqrt{x-5}^2+2\sqrt{\left(x-5\right)\left(7-x\right)}+\sqrt{7-x}^2=4\)

\(\Rightarrow x-5+2\sqrt{\left(x-5\right)\left(7-x\right)}+7-x=4\)

\(\Rightarrow2\sqrt{\left(x-5\right)\left(7-x\right)}=2\)

\(\Rightarrow\sqrt{\left(x-5\right)\left(7-x\right)}=1\)

\(\Rightarrow\left(x-5\right)\left(7-x\right)=1\)

\(\Rightarrow-x^2+2x-35=1\)

\(\Rightarrow x^2-2x+36=0\)

\(\Rightarrow\left(x-1\right)^2+35=0\)( vô lí )

\(\Rightarrow\)Phương trình vô nghiệm

24 tháng 9 2015

Nguyễn Huy Hải chuẩn rồi

24 tháng 9 2015

Ngu Người ai chả bt

Ngọc Vĩ e bt nhưg âu kb -_- 

27 tháng 8 2019

\(a,\sqrt{3-x}+\sqrt{2-x}=1\)

\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)

\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)

\(\Rightarrow2x+2\sqrt{2-x}=0\)

\(\Rightarrow x+\sqrt{2-x}=0\)

\(\Rightarrow2-x=\left(-x\right)^2\)

\(\Rightarrow2-x=x^2\)

\(\Rightarrow2-x^2-x=0\)

\(\Rightarrow x^2+x-2=0\) 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

Vậy....

5 tháng 8 2018

\(a,\sqrt{2x+5}=\sqrt{1-x}\)

\(\Rightarrow2x+5=1-x\)

\(2x+x=1-5\)

\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)

Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên

11 tháng 5 2018

a) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)

\(\Leftrightarrow3\sqrt{x}-6\sqrt{x}+4\sqrt{x}=5\)

\(\Leftrightarrow\sqrt{x}=5\)

<=>  x = 25

b) pt <=> \(\left(x^2+5\right)=\left(x+1\right)^2\)

        <=>  \(\left(x^2+5\right)=x^2+2x+1\)

        <=>   2x = 4

         <=>  x = 2 

c)  pt <=> \(45-14\sqrt{x}+x=x-11\)

         <=> \(45+11=14\sqrt{x}\)

<=> \(56=14\sqrt{x}\)

<=> \(4=\sqrt{x}\)

<=>  x = 16

p/s : Cậu tự đặt điều kiện nhé

30 tháng 9 2015

Điều kiện xác định của hệ: \(x\ge0,y\ge5.\)

Kí hiệu \(VT,VP\) tương ứng là vế trái và phải của phương trình thứ nhất.

Nếu \(x>y-5\to x+4>y-1,x+2>y-3\to VT>VP.\)
Nếu \(x<\)\(y-5\)  thì tương  tự \(VT<\)\(VP.\)

Vậy \(x=y-5.\)

Thay vào phương trình thứ hai cho ta 

\(\left(y-5\right)^2+y^2+\left(y-5\right)+y=44\Leftrightarrow2y^2-8y-24=0\to y^2-4y-12=0\to\)

\(\to\left(y-6\right)\left(y+2\right)=0\to y=-2,6.\) Vì \(y\ge5\to y=6\to x=1.\)

Vậy nghiệm của hệ là \(\left(x,y\right)=\left(1,6\right).\)

1. a) Tính:\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\) b)Tính giá trị của biểu thức:M = \(\frac{\left(x-1\right).\sqrt{3}}{\sqrt{x^2}-x+1}\) với x = \(2+\sqrt{3}\)2.CMR nếu: a) \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\) thì \(b+c\ge2a\) b) Nếu a,b >0 thì:\(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)3. a) Giải pt:   1.\(\sqrt{x^2-16x+64}-2\sqrt{x^2-8x+16}+\sqrt{x^2}=0\)   2. \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)b)...
Đọc tiếp

1. a) Tính:

\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)

 b)Tính giá trị của biểu thức:

\(\frac{\left(x-1\right).\sqrt{3}}{\sqrt{x^2}-x+1}\) với \(2+\sqrt{3}\)

2.CMR nếu:

 a) \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\) thì \(b+c\ge2a\)

 b) Nếu a,b >0 thì:

\(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)

3. a) Giải pt:

   1.\(\sqrt{x^2-16x+64}-2\sqrt{x^2-8x+16}+\sqrt{x^2}=0\)

   2. \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

b) giải bất pt

 \(\sqrt{x^2-4x}< \sqrt{5}\)

4*.Chứng minh rằng với mọi số nguyên dương n ta luôn có:

\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)

5*. Tìm GTNN của hàm số:

\(y=\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)

Có ai làm đc bài nào thì làm giúp mình nhé...  1 bài tkoy cũng được ạ. mình cảm ơn.

3
23 tháng 7 2018

Mấy bài này dài vật vã ghê =)))))))))))))

1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\) 

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)

=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)

b, M \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))

\(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)

\(\sqrt{3}\left(x-1\right)\)

Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:

M\(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)

Vậy với x = \(2+\sqrt{3}\)thì M\(3+\sqrt{3}\)

2, Mình chỉ giải câu a thôi nhé:

\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)

\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)

\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)

\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)

Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)

\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)

\(\Leftrightarrow2\left(b+c\right)\ge4a\)

\(\Leftrightarrow b+c\ge2a\)

4*. Thật ra cái này mình xài làm trội, làm giảm là được mà

Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)

Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)

          \(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)

  +      .........................................................

          \(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)  

Cộng tất cả vào

\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)

\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)

\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)

\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)

\(A+1>2\sqrt{n+1}-3+1\)

\(A+1>2\sqrt{n+1}-2\)

\(A+1>2\left(\sqrt{n+1}-1\right)\)

Vậy ta có điều phải chứng minh.

23 tháng 7 2018

Cảm ơn b Trần Bảo Như nha <3