K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

 x^3 + (x - 2)(2x + 1) = 8

<=> x^3 + 2x^2 - 3x - 2 - 8 = 0

<=> x^3 + 2x^2 - 3x - 10 = 0

<=> (x - 2)(x^2 + 4x + 5) = 0

vì x^2 + 4x + 5 > 0 nên:

<=> x - 2 = 0

<=> x = 2

24 tháng 4 2020

       x^3+(x-2)(2x+1)=8

<=>x^3+2x^2-3x-10=0

<=>x^3-2x^2+4x^2-8x+5x-10=0

<=>x^2(x-2)+4x(x-2)+5(x-2)=0

<=>(x-2)(x^2+4x+5)=0

Mà x^2+4x+5>0

=>x-2=0<=>x=2

   Hok tốt !

=>x^3+6x^2+12x+8+1/3(8x^3-24x^2+24x-8)=1/5x+2/5+8

=>x^3+6x^2+12x+8+8/3x^3-8x^2+8x-8/3=1/5x+42/5

=>11/3x^3-2x^2+20x+16/3-1/5x-42/5=0

=>11/3x^3-11/5x^2+20x-46/15=0

=>\(x\simeq0,16\)

2 tháng 9 2023

latex đi anh, khó hiểu quá.

\(\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{x^2-2x-3}\)

* x2 - 2x - 3 = x2- 3x + x - 3 = x(x-3 ) + ( x - 3) = ( x - 3 ) (  x + 1 )

\(\Leftrightarrow\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\left(ĐKXĐ:x\ne\pm3;x\ne-1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+8\left(x+3\right)=2x\left(x+3\right)\)

\(\Leftrightarrow x^2-2x+1+8x+24=2x^2+6x\)

\(\Leftrightarrow-x^2+25=0\)

\(\Leftrightarrow x^2-25=0\Leftrightarrow\left(x-5\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)

Vậy \(S=\left\{-5;5\right\}\)

Câu 1: 

a: x+2=0

nên x=-2

b: (x-3)(2x+8)=0

=>x-3=0 hoặc 2x+8=0

=>x=3 hoặc x=-4

23 tháng 5 2022

a . 

x + 2 = 0

=> x = 0 - 2 = -2 

b ) .

<=> x - 3 = 0 ; 2x + 8 = 0

= > x = 3 ; x = -8/2 = -4 

c ) .

ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5

a: Đặt x-3=a; x+1=b

Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

=>(x-3)(x+1)(2x-2)=0

hay \(x\in\left\{3;-1;1\right\}\)

b: \(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-15x^2-9x^2=0\)

\(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-24x^2=0\)

\(\Leftrightarrow\left(2x^2+1\right)^2+6x\left(2x^2+1\right)-4x\left(2x^2+1\right)-24x^2=0\)

\(\Leftrightarrow\left(2x^2+1\right)\left(2x^2+6x+1\right)-4x\left(2x^2+6x+1\right)=0\)

\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)

\(\Leftrightarrow x^2+3x+\dfrac{1}{2}=0\)

\(\Leftrightarrow x^2+3x+\dfrac{9}{4}=\dfrac{7}{4}\)

\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{7}{4}\)

hay \(x\in\left\{\dfrac{\sqrt{7}-3}{2};\dfrac{-\sqrt{7}-3}{2}\right\}\)

 

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

22 tháng 3 2021

a, 3x - 7 = 0

<=> 3x = 7

<=> x = 7/3

b, 8 - 5x = 0

<=> -5x = -8

<=> x = 8/5

c, 3x - 2 = 5x + 8

<=> -2x = 10

<=> x = -5

e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như thế này gây khó đọc.