K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2020

\(\Leftrightarrow3\sqrt{3}x^3+9x^2+3\sqrt{3}x-9=0\)

\(\Leftrightarrow\left(\sqrt{3}x\right)^3+3.\left(\sqrt{3}x\right)^2.1+3.\left(\sqrt{3}x\right).1^2+1^3-10=0\)

\(\Leftrightarrow\left(\sqrt{3}x+1\right)^3=10\)

\(\Leftrightarrow\sqrt{3}x+1=\sqrt[3]{10}\)

\(\Leftrightarrow x=\frac{\sqrt[3]{10}-1}{\sqrt{3}}\)

28 tháng 5 2017

câu a:

\(8x^2-6x+3-2x=\left(2x-1\right)\sqrt{8x^2-6x+3}\)

đặt \(t=\sqrt{8x^2-6x+3}\Leftrightarrow t^2=8x^2-6x+3\)phương trình trở thành

\(t^2-2x=\left(2x-1\right)t\Leftrightarrow t^2-\left(2x-1\right)t-2x=0\)

có \(\Delta=\left(2x-1\right)^2+8x=\left(2x+1\right)^2\Rightarrow\orbr{\begin{cases}t=-1\\t=2x\end{cases}}\)

  1. \(t=-1\Rightarrow8x^2-6x+3=1\Leftrightarrow8x^2-6x+2=0VN\)
  2. \(t=2x\Rightarrow8x^2-6x+3=4x^2\Leftrightarrow4x^2-6x+3=0VN\)
28 tháng 5 2017

Câu b:

Đặt \(t=\sqrt{x^2+1}\Leftrightarrow t^2=x^2+1\left(t>0\right)\)

PT\(\Leftrightarrow t^2-\left(x+3\right)t+3x=0\)

có :\(\Delta=\left(x+3\right)^2-4.3x=\left(x-3\right)^2\Rightarrow\orbr{\begin{cases}t=3\\t=x\end{cases}}\)

  1. \(t=3\Rightarrow9=x^2+1\Leftrightarrow x^2=8\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{2}\\x=-2\sqrt{2}\end{cases}}\)
  2. \(t=x\Leftrightarrow x^2=x^2+1VN\)
14 tháng 7 2018

b) Ta có pt \(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)

<=>  \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\Leftrightarrow\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|=1\)

Mà \(\left|3-\sqrt{x-1}\right|+\left|\sqrt{x-1}-2\right|\ge\left|3-\sqrt{x-1}+\sqrt{x-1}-2\right|=1\)

...

14 tháng 7 2018

a) Đặt \(\sqrt{x^2-4x-5}=a\left(a\ge0\right)\)

Ta có pt \(\Leftrightarrow2a^2-3a-2=0\Leftrightarrow\left(a-2\right)\left(2a+1\right)=0\)

...

23 tháng 5 2017

a/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)

\(\Rightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(\Rightarrow\left(-2\right)\left(x+2\right)+2\left(x^2-2x+4\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)

Chia 2 vế cho x2 - 2x + 4 ta được:

\(\left(-2\right).\frac{x+2}{x^2-2x+4}+2=3\sqrt{\frac{x+2}{x^2-2x+4}}\)

Đặt \(a=\sqrt{\frac{x+2}{x^2-2x+4}}\left(a\ge0\right)\) ta được:

\(-2a^2-3a+2=0\Rightarrow\left(1-2a\right)\left(a+2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{2}\left(n\right)\\a=-2\left(l\right)\end{cases}}\)

\(a=\frac{1}{2}\Leftrightarrow\sqrt{\frac{x+2}{x^2-2x+4}}=\frac{1}{2}\Rightarrow\frac{x+2}{x^2-2x+4}=\frac{1}{4}\)

\(\Rightarrow x^2-6x-4=0\Rightarrow\orbr{\begin{cases}x=3+\sqrt{13}\\x=3-\sqrt{13}\end{cases}}\) (cái này tính denta là ra kết quả thôi)

                                                        Vậy có 2 nghiệm trên

câu b, c tương tự thôi

17 tháng 7 2016

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)

Ta xét 3 trường hợp : 

1. Với \(x< 1\) , pt trên trở thành : \(1-x+2-x=3\Leftrightarrow2x=0\Leftrightarrow x=0\)(nhận)

2. Với \(1\le x\le2\), pt trên trở thành : \(x-1+2-x=3\Leftrightarrow1=3\)(vô lý - loại)

3. Với \(x>2\) , pt trên trở thành : \(x-1+x-2=3\Leftrightarrow2x=6\Leftrightarrow x=3\)(nhận)

Vậy tập nghiệm của phương trình : \(S=\left\{0;3\right\}\)

17 tháng 7 2016

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow x-1+x-2=3\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=2\)