Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9-\sqrt{81-7x^3}=\frac{x^3}{2}\)
\(\Leftrightarrow-\sqrt{81-7x^3}=\frac{x^3}{2}-9\)
Bình phương hai vế lên, ta được:
\(\Leftrightarrow81-7x^3=\frac{x^6}{4}-9x^3+81\)
\(\Leftrightarrow-7x^3=\frac{x^6}{4}-9x^3\)
\(\Leftrightarrow-7x^3+\frac{x^6}{4}-9x^3=0\)
\(\Leftrightarrow-2x^3+\frac{x^6}{4}=0\)
\(\Leftrightarrow-x^3\left(2-\frac{x^3}{4}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-\frac{x^3}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy nghiệm phương trình là: {0; 2}
Lời giải:
ĐK: $x\geq \frac{-18}{7}$
PT $\Leftrightarrow x^2+3x-4-3(\sqrt{x+3}-2)-(\sqrt{7x+18}-5)=0$
$\Leftrightarrow (x-1)(x+4)-3.\frac{x-1}{\sqrt{x+3}+2}-\frac{7(x-1)}{\sqrt{7x+18}+5}=0$
$\Leftrightarrow (x-1)\left(x+4-\frac{3}{\sqrt{x+3}+2}-\frac{7}{\sqrt{7x+18}+5}\right)=0$
Xét các TH:
Nếu $x-1=0\Rightarrow x=1$ (thỏa mãn)
Nếu $x+4-\frac{3}{\sqrt{x+3}+2}-\frac{7}{\sqrt{7x+18}+5}=0$
$\Leftrightarrow (x+2)+1-\frac{3}{\sqrt{x+3}+2}+1-\frac{7}{\sqrt{7x+18}+5}=0$
$\Leftrightarrow x+2+\frac{\sqrt{x+3}-1}{\sqrt{x+3}+2}+\frac{\sqrt{7x+18}-2}{\sqrt{7x+18}+5}=0$
\(\Leftrightarrow (x+2)+\frac{x+2}{(\sqrt{x+3}+1)(\sqrt{x+3}+2)}+\frac{7(x+2)}{(\sqrt{7x+18}+2)(\sqrt{7x+18}+5)}=0\)
\(\Leftrightarrow (x+2)\left( 1+\frac{1}{(\sqrt{x+3}+1)(\sqrt{x+3}+2)}+\frac{7}{(\sqrt{7x+18}+2)(\sqrt{7x+18}+5)}\right)=0\)
Dễ thấy biểu thức trong ngoặc lớn luôn dương nên $x+2=0\Leftrightarrow x=-2$
Vậy $x=-2$ hoặc $x=1$
a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\) (*)
Đặt \(2x^2+3x=a\left(a\ge-9\right)\)
=> \(5\sqrt{a+9}=a+3\)
<=> \(25\left(a+9\right)=a^2+6a+9\)
<=> \(25a+225=a^2+6a+9\)
<=> \(0=a^2+6a+9-25a-225=a^2-19a-216\)
<=> 0= \(a^2-27a+8a-216\)
<=> \(\left(a-27\right)\left(a+8\right)=0\)
=> \(\left[{}\begin{matrix}a=27\\a=-8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}2x^2+3x=27\\2x^2+3x=-8\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x^2+3x-27=0\\2x^2+3x+8=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}\left(x-3\right)\left(2x+9\right)=0\\2\left(x^2+2.\frac{3}{4}+\frac{9}{16}\right)+\frac{55}{8}=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{9}{2}\left(tm\right)\\2\left(x+\frac{3}{4}\right)^2=-\frac{55}{8}\left(ktm\right)\end{matrix}\right.\)
Vậy pt (*) có tập nghiệm \(S=\left\{3,-\frac{9}{2}\right\}\)
b, \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\left(đk:x\le\sqrt[3]{\frac{81}{7}}\right)\)(*)
<=> \(\sqrt{81-7x^3}=9-\frac{x^3}{2}\)
<=>\(81-7x^3=\left(9-\frac{x^3}{2}\right)^2=81-9x^3+\frac{x^6}{4}\)
<=> \(-7x^3+9x^3-\frac{x^6}{4}=0\) <=> \(2x^3-\frac{x^6}{4}=0\)<=> \(8x^3-x^6=0\)
<=> \(x^3\left(8-x^2\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\8=x^2\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=0\left(tm\right)\\x=\pm2\sqrt{2}\left(ktm\right)\end{matrix}\right.\)
Vậy pt (*) có nghiệm x=0
d,\(\sqrt{9x-2x^2}-9x+2x^2+6=0\) (*) (đk: \(0\le x\le\frac{1}{2}\))
<=> \(\sqrt{9x-2x^2}-\left(9x-2x^2\right)+6=0\)
Đặt \(\sqrt{9x-2x^2}=a\left(a\ge0\right)\)
Có \(a-a^2+6=0\)
<=> \(a^2-a-6=0\) <=> \(a^2-3x+2x-6=0\)
<=> \(\left(a-3\right)\left(a+2\right)=0\)
=> \(a-3=0\) (vì a+2>0 vs mọi \(a\ge0\))
<=> a=3 <=>\(\sqrt{9x-2x^2}=3\) <=> \(9x-2x^2=9\)
<=> 0=\(2x^2-9x+9\) <=> \(2x^2-6x-3x+9=0\) <=>\(\left(2x-3\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}2x=3\\x=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)(t/m)
Vậy pt (*) có tập nghiệm \(S=\left\{\frac{3}{2},3\right\}\)
\(ĐK:x\ge2,26\)
\(\Leftrightarrow2\sqrt{81-7x^3}=18-x^3\)
\(\Leftrightarrow4.\left(81-7x^3\right)=\left(18-x^3\right)^2\)
\(\Leftrightarrow324-28x^3=324-36x^3+x^5\)
\(\Leftrightarrow8x^3-x^5=0\)
\(\Leftrightarrow x^3\left(8-x^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^3=0\\8-x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^3=0\\x^2=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\sqrt{2}\left(TM\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\sqrt{2}\right\}\)
ĐK: \(x^3\le\frac{81}{7}\)
\(x^3+2\sqrt{81-7x^3}=18\)
⇔ \(7x^3+2.7\sqrt{81-7x^3}=126\)
⇔ \(81-7x^3-2.7\sqrt{81-7x^3}+49=4\)
⇔ \(\left(\sqrt{81-7x^3}-7\right)^2=4\)
⇔ \(\left[{}\begin{matrix}\sqrt{81-7x^3}-7=2\\\sqrt{81-7x^3}-7=-2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) (t/m ĐK)
Vậy ...