Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=m\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(2-\sqrt{x-4}\right)^2}=m\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|=m\)
mà \(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\)
\(\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)
\(\Rightarrow m\ge4\) thì pt trên có no
a) \(x^2-11=0\)
<=> \(x^2-\sqrt{11}=0\)
<=> \(\left(x-\sqrt{11}\right)\left(x+\sqrt{11}\right)=0\)
<=> \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{11}\\x=-\sqrt{11}\end{matrix}\right.\) => x = \(\pm\sqrt{11}\) Vậy S ={ \(\pm\sqrt{11}\)}
b) \(x^2-2\sqrt{13}x+13=0\)
\(\Leftrightarrow\left(x-\sqrt{13}\right)^2=0\)
=> x = \(\sqrt{13}\)
Vậy S = {\(\sqrt{13}\) }
\(c\)) \(\sqrt{x^2-10x+25}=7-2x\)
\(\Leftrightarrow\sqrt{\left(x-5\right)^2}=7-2x\)
\(\Leftrightarrow\left|x-5\right|=7-2x\)
=> Có 2 TH xảy ra
* Khi x - 5 \(\ge0\Leftrightarrow x\ge5\) Ta có PT :
x - 5 = 7 - 2x
<=> 3x = 12
=> x= 4 (KTM)
* Khi x - 5 < 0 => x < 5
Ta có pT
-x + 5 = 7-2x
<=> x = 2 (TM)
Vậy S = { 2 }
\(a\text{)} x^2-11=0\\ x^2=11\\ x=\pm\sqrt{11}\)
\(b\text{)}\:x^2-2\sqrt{13x}+13=0\\ \left(x-\sqrt{13}\right)^2=0\\ x-\sqrt{13}=0\\ x=\sqrt{13}\)
\(c\text{)}\:\sqrt{x^2-10x+25}=7-2x\\ \left|x-5\right|=7-2x\\ \Rightarrow\left[{}\begin{matrix}x-5=7-2x\left(với\:x\ge5\right)\\5-x=7-2x\left(với\:x< 5\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\left(loại\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
1. ĐKXĐ: $\xgeq \frac{-6}{5}$
PT \(\Leftrightarrow [\sqrt{2x^2+5x+7}-(x+3)]+[(x+2)-\sqrt{5x+6}]+(x^2-x-2)=0\)
\(\Leftrightarrow \frac{x^2-x-2}{\sqrt{2x^2+5x+7}+x+3}+\frac{x^2-x-2}{x+2+\sqrt{5x+6}}+(x^2-x-2)=0\)
\(\Leftrightarrow (x^2-x-2)\left(\frac{1}{\sqrt{2x^2+5x+7}+x+3}+\frac{1}{x+2+\sqrt{5x+6}}+1\right)=0\)
Với $x\geq \frac{-6}{5}$, dễ thấy biểu thức trong ngoặc lớn hơn hơn $0$
Do đó: $x^2-x-2=0$
$\Leftrightarrow (x+1)(x-2)=0$
$\Leftrightarrow x=-1$ hoặc $x=2$ (đều thỏa mãn)
Bài 2: Tham khảo tại đây:
Giải pt \(\sqrt{2x+1} - \sqrt[3]{x+4} = 2x^2 -5x -11\) - Hoc24
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
\(2x^2-\left(1-2\sqrt{2}\right)x-\sqrt{2}=0\)
\(\Leftrightarrow\) \(2x^2-x-2x\sqrt{2}-\sqrt{2}=0\)
\(\Leftrightarrow\) \(2\left(x^2-\dfrac{1}{2}x-x\sqrt{2}-\dfrac{\sqrt{2}}{2}\right)=0\)
\(\Leftrightarrow\) \(2\left(x-\dfrac{1}{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\) \(x-\dfrac{1}{2}=0\) hoặc \(x+\sqrt{2}=0\)
\(\Leftrightarrow\) \(x=\dfrac{1}{2}\) \(\Leftrightarrow\) \(x=-\sqrt{2}\)
Bạn chưa hiểu cách phân tích thì xem ở video này :https://www.youtube.com/watch?v=8STBCtfr0Dg
đặt x+5=a\(\left(a\ge0\right)\) khi đó phương trình trở thành:
\(a^2-4+\sqrt{a}+\sqrt{16-a}=0\)
lại có \(\sqrt{a}+\sqrt{16-a}\ge\sqrt{a+16-a}=4\)
nên ta có:
\(a^2-4+\sqrt{a}+\sqrt{16-a}\ge a^2\)
Suy ra \(0\ge a^2\)
\(\Rightarrow a=0\)hay x+5=0
\(\Leftrightarrow x=-5\)
Cảm ơn