Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x+6=0\\\frac{\left(x+3\right)^2}{\left(x+4\right)^2}=0\end{cases}}\)
\(\text{+)(x+3)^2/(x+4)^2=0 suy ra (x+3)^2=0 suy ra: x+3=0 suy ra: x=-3}\)
\(+,x^2+6x+6=0\Rightarrow\left(x^2+6x+9\right)=3\Rightarrow\left(x+3\right)^2=3\)
\(\Leftrightarrow x+3=\pm\sqrt{3}\Leftrightarrow x=-\sqrt{3}-3.hoặc:x=\sqrt{3}-3\)
Vậy,,,,,,,,,,
Bài 2 giải như sau (sau khi tác giả đã sửa): Điều kiện \(x,y>0.\)
Từ hệ ta suy ra \(1+\frac{3}{x+3y}=\frac{2}{\sqrt{x}},1-\frac{3}{x+3y}=\frac{4\sqrt{2}}{\sqrt{7y}}.\) Cộng và trừ hai phương trình, chia cả hai vế cho 2, ta sẽ được 2 phương trình \(1=\frac{1}{\sqrt{x}}+\frac{2\sqrt{2}}{\sqrt{7y}},\frac{3}{x+3y}=\frac{1}{\sqrt{x}}-\frac{2\sqrt{2}}{\sqrt{7y}}.\) Nhân hai phương trình với nhau, vế theo vế, ta được
\(\frac{3}{x+3y}=\frac{1}{x}-\frac{8}{7y}\to21xy=\left(x+3y\right)\left(7y-8x\right)\to21y^2-38xy-8x^2=0\to x=\frac{y}{2},x=-\frac{21}{4}y.\)
Đến đây ta được y=2x (trường hợp kia loại). Từ đó thế vào ta được \(1+\frac{3}{7x}=\frac{2}{\sqrt{x}}\to7x-14\sqrt{x}+3=0\to\sqrt{x}=\frac{7\pm2\sqrt{7}}{2}\to...\)
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
\(\frac{x^3\left(x-1\right)^3}{\left(x-1\right)^3}+\frac{x^3}{\left(x-1\right)^3}+\frac{3x^2\left(x-1\right)^2}{\left(x-1\right)^3}-\frac{2\left(x-1\right)^3}{\left(x-1\right)^3}=0,\)
\(x^5-x^4-2x^5+2x^5+x^4-x^3+x^3+3x^2\left(x-1\right)^2-2\left(x-1\right)^3=0\)
\(x^5+3x^4-6x^3+3x^2-2\left(x^2-2x+1\right)\left(x-1\right)=0\)
\(x^5+3x^4-6x^3+3x^2-2\left(x^3-x^2-2x^2+2x+x-x\right)=0\)
\(x^5+3x^4-6x^3+3x^2-2x^3+2x^2+4x^2-4x-2x+2x=0\)
\(x^5+3x^4-8x^3+9x^2-4x=0\)
\(x\left(x^4+3x^3-8x^2+9x-4\right)=0\)
ccc m cho đề khó thế m tự giải đi , nhức não