\(x^2+2=\left(2x+1\right)\sqrt{x}\)

 ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

Bài làm:

Ta có: \(\left(x^2+2\right)=\left(2x+1\right)\sqrt{x}\)

\(\Leftrightarrow\left(x^2+2\right)^2=\left(2x+1\right)^2x\)

\(\Leftrightarrow x^4+4x^2+4=\left(4x^2+4x+1\right)x\)

\(\Leftrightarrow x^4-4x^3+4-x=0\)

\(\Leftrightarrow x^3\left(x-4\right)-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x^3-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)\left(x^2+x+1\right)=0\)

Mà \(x^2+x+1>0\left(\forall x\right)\)

=> \(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=4\end{cases}}\)

24 tháng 8 2020

Cho mk bổ sung cái đk là: \(x\ge0\) nhé:)

24 tháng 7 2019

ĐKXĐ : x > 2

Ta có \(\left(\sqrt{x+3}-\sqrt{x-2}\right)\left(1+\sqrt{x^2+x-6}\right)=5\)

\(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)\left(1+\sqrt{\left(x+3\right)\left(x-2\right)}\right)=5\)

Đặt \(\hept{\begin{cases}\sqrt{x+3}=a\left(a>0\right)\\\sqrt{x-2}=b\left(b\ge0\right)\end{cases}}\)

\(\Rightarrow a^2-b^2=x+3-x+2=5\) và \(a\ne b\)

Pt trở thành \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

        \(\Leftrightarrow\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)

        \(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)

      \(\Leftrightarrow\left(a-b\right)\left(1-a\right)\left(1-b\right)=0\)

       \(\Leftrightarrow a=b\left(h\right)a=1\left(h\right)b=1\)                                     (h) là hoặc nhé

*Với a = b (Loại do a khác b)

*Với \(a=1\Rightarrow\sqrt{x+3}=1\)

                    \(\Leftrightarrow x+3=1\)

                    \(\Leftrightarrow x=-2\)(Loại do ko thỏa mãn ĐKXĐ)

*Với \(b=1\Rightarrow\sqrt{x-2}=1\)

                    \(\Leftrightarrow x-2=1\)

                    \(\Leftrightarrow x=3\left(Tm\cdotĐKXĐ\right)\)

Vậy pt có nghiệm duy nhất x = 3

26 tháng 9 2016

1/ Điều kiện xác định \(x\ge0\)

\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)

\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)

Vậy pt vô nghiệm

2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)

\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)

\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)

Vậy pt vô nghiệm.

26 tháng 9 2016

1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)

Đặt \(a=\sqrt{x}-1\) ta  đc:

\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)

\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)

\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)

=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))

 

11 tháng 8 2020

a) ĐKXĐ: x \(\ge\)0; x \(\ne\)4; x \(\ne\)9

Ta có: \(P=\frac{\sqrt{x}+2}{\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{3\left(\sqrt{x}+1\right)}{x-5\sqrt{x}+6}\)

\(P=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{x-4-x+2\sqrt{x}+3-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{-4+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

P = \(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(P=\frac{2}{\sqrt{x}-3}\)

b) Ta có: P < -1 <=> \(\frac{2}{\sqrt{x}-3}< -1\) <=> \(\frac{2}{\sqrt{x}-3}+1< 0\)

<=> \(\frac{2+\sqrt{x}-3}{\sqrt{x}-3}< 0\) <=> \(\frac{\sqrt{x}-1}{\sqrt{x}-3}< 0\)

TH1: \(\hept{\begin{cases}\sqrt{x}-1< 0\\\sqrt{x}-3>0\end{cases}}\) <=> \(\hept{\begin{cases}x< 1\\x>9\end{cases}}\)(loại)

TH2: \(\hept{\begin{cases}\sqrt{x}-1>0\\\sqrt{x}-3< 0\end{cases}}\) <=> \(\hept{\begin{cases}x>1\\x< 9\end{cases}}\)

Kết hợp vs đk => S = {x|1  < x < 9 và x \(\ne\)4}

c) Để P nguyên <=> 2 \(⋮\)\(\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Lập bảng: tự làm

11 tháng 8 2020

@Edogawa Conan phân số thứ 2 bạn bị sai rồi \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)=x+2\sqrt{x}-3\)

trước phân số là dấu "-" phải đổi dấu

11 tháng 10 2020

cm > hay < ?

2 tháng 8 2020

Bài 2 : 

Tìm min : Bình phương 

Tìm max : Dùng B.C.S ( bunhiacopxki )

Bài 3 : Dùng B.C.S

2 tháng 8 2020

KP9

nói thế thì đừng làm cho nhanh bạn ạ

Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích