Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)Áp dụng BĐT AM-GM
\(x^2+1\ge2\sqrt{x^2}=2x\)
\(y^2+4\ge2\sqrt{4y^2}=4y\)
\(z^2+9\ge2\sqrt{9z^2}=6z\)
Nhân theo vế ta có:
\(VT=\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x\cdot4y\cdot6z=48xyz=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\\\left(z-3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
e)Áp dụng BĐT AM-GM ta có:
\(x+1\ge2\sqrt{x}\)
\(y+1\ge2\sqrt{y}\)
\(x+y\ge2\sqrt{xy}\)
Nhân theo vế ta có:
\(VT=\left(x+1\right)\left(y+1\right)\left(x+y\right)\ge2\sqrt{x}\cdot2\sqrt{x}\cdot2\sqrt{xy}=8xy=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x+1=2\sqrt{x}\\y+1=2\sqrt{y}\\x+y=2\sqrt{xy}\left(x+y\ge0\right)\end{matrix}\right.\)\(\Rightarrow x=y=0\)
1/
\(x+y=z+t\Rightarrow t=x+y-z\)
\(\Rightarrow t^2=\left(x+y-z\right)^2=x^2+y^2+z^2+2xy-2xz-2yz\)
Thay vào
\(B=x^2+y^2+z^2+x^2+y^2+z^2+2xy-2xz-2yz\)
\(B=x^2+2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)
\(B=\left(x+y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\) (đpcm)
2/
\(A=x^2+\dfrac{y^2}{4}+\dfrac{9}{4}+xy-3x-\dfrac{3y}{2}+\dfrac{3y^2}{4}-\dfrac{3y}{2}-\dfrac{9}{4}\)
\(\Leftrightarrow A=\left(x^2+\dfrac{y^2}{4}+\dfrac{9}{4}+xy-3x-\dfrac{3y}{2}\right)+\dfrac{3}{4}\left(y^2-2y+1\right)-3\)
\(\Leftrightarrow A=\left(x+\dfrac{y}{2}-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2-3\ge-3\)
\(\Rightarrow A_{min}=-3\) khi \(\left\{{}\begin{matrix}y-1=0\\x+\dfrac{y}{2}-\dfrac{3}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
b/ Nhận thấy \(x=1\) không phải là nghiệm
\(y\left(x-1\right)=x^3-x^2+2\)
\(\Leftrightarrow y=\dfrac{x^3-x^2+2}{x-1}=x^2+\dfrac{2}{x-1}\)
Do \(x;y\) nguyên \(\Rightarrow\dfrac{2}{x-1}\) nguyên
\(\Rightarrow x-1=Ư\left(2\right)=\left\{-2;-1;1;2\right\}\)
\(x-1=-2\Rightarrow x=-1\Rightarrow y=0\)
\(x-1=-1\Rightarrow x=0\Rightarrow y=-2\)
\(x-1=1\Rightarrow x=2\Rightarrow y=6\)
\(x-1=2\Rightarrow x=3\Rightarrow y=10\)
Vậy pt đã cho có 4 cặp nghiệm:
\(\left(x;y\right)=\left(-1;0\right);\left(0;-2\right);\left(2;6\right);\left(3;10\right)\)
\(x^2+y^2+z^2+t^2\ge x\left(y+z+t\right)\)
\(\Leftrightarrow x^2+y^2+z^2+t^2\ge xy+xz+xt\)
\(\Leftrightarrow4x^2+4y^2+4z^2+4t^2\ge4xy+4xz+4xt\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+a^2\ge0\)
(BĐT đúng)
Vậy ta có đpcm
\(x^2+y^2+z^2+t^2=x\left(y+z+t\right)\)
\(\Rightarrow4x^2+4y^2+4z^2+4t^2=4xy+4xz+4xt\)
\(\Rightarrow4x^2+4y^2+4z^2+4t^2-4xy-4xz-4xt=0\)
\(\Rightarrow x^2-4xy+4y^2+x^2-4xz+4z^2+x^2-4xt+4t^2+x^2=0\)
\(\Rightarrow\left(x-2y\right)^2+\left(x-2z\right)^2+\left(x-2t\right)^2+x^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2y=0\\x-2z=0\\x-2t=0\\x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=2y\\x=2z\\x=2t\\x=0\end{matrix}\right.\)
\(\Rightarrow x=y=z=t=0\)
Kết luận: \(x=y=z=t=0\)
pt đã cho tương đương với
4x2 + 4y2+ 4t2 + 4z2 = 4xy + 4xz + 4xt
<=> x2 - 4xy + 4y2 + x2 - 4xz + 4z2 + x2 - 4xt + 4t2 + x2 = 0
<=> (x-y)2 + (x-z)2 + (x-t)2 + x2 = 0
<=> (x-y)2 = (x-z)2 = (x-t)2 = x2 = 0
<=> x-y = x-z = x - t = x =0
<=> x = y = z = t = 0