Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a )Thế \(m=1\) vào phương trình ta được :
\(2x^2-3x-2=0\)
\(\Leftrightarrow2x^2+x-4x-2=0\)
\(\Leftrightarrow x\left(2x+1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-\frac{1}{2};2\right\}\)
b ) Theo hệ thức vi-et ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\frac{6m-3}{2}\\x_1x_2=\frac{-3m+1}{2}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(\frac{6m-3}{2}\right)^2-\frac{2\left(-3m+1\right)}{2}\)
\(=\frac{36m^2-36m+9}{4}+3m-1\)
\(=\frac{36m^2-36m+9+12m-4}{4}\)
\(=\frac{36m^2-24m+5}{4}\)
\(=\frac{36m^2-24m+4+1}{4}\)
\(=\frac{\left(6m-2\right)^2+1}{4}\ge\frac{1}{4}\)
Vậy GTNN của A là \(\frac{1}{4}\) . Dấu bằng xảy ra khi \(x=\frac{1}{3}\)
3.(2X+3)=-X.(X-2)-1 <=>6X+9=-\(x^2\)+2X-1 <=> \(x^2\) +4x+10=0 (\(\Delta\)' =4-10=-6 nhỏ hơn 0)
pt vô nghiệm
`ĐK:x>=2`
`pt<=>sqrt{(x-1)(x-2)}+sqrt{x+3}=sqrt{x-2}+sqrt{(x-1)(x+3)}`
`<=>sqrt{x-1}(sqrt{x-2}-sqrt{x+3})-(sqrt{x-2}-sqrt{x+3})=0`
`<=>(sqrt{x-2}-sqrt{x+3})(sqrt{x-1}-1)=0`
`+)sqrt{x-2}=sqrt{x+3}`
`<=>x-2=x+3`
`<=>0=5` vô lý
`+)sqrt{x-1}-1=0`
`<=>x-1=1`
`<=>x=2(tm)`.
Vậy `x=2`.
\(2+\dfrac{3\left(x+1\right)}{3}\le3-\dfrac{x-1}{4}\)
\(\Leftrightarrow2+x+1\le\dfrac{12}{4}-\dfrac{x-1}{4}\)
\(\Leftrightarrow x+3\le\dfrac{13-x}{4}\)
\(\Leftrightarrow\dfrac{4x+12}{4}\le\dfrac{13-x}{4}\)
\(\Leftrightarrow4x+12\le13-x\)
\(\Leftrightarrow4x+x\le13-12\)
\(\Leftrightarrow5x\le1\)
\(\Leftrightarrow x\le\dfrac{1}{5}\)
Vậy: \(x\le\dfrac{1}{5}\)
\(2+\dfrac{3\left(x+1\right)}{3}\le3-\dfrac{x-1}{4}\)
\(\Leftrightarrow\dfrac{12x+36}{12}\le\dfrac{33-3x}{12}\)
\(\Leftrightarrow12x+36\le33-3x\)
\(\Leftrightarrow12x+3x\le-36+33\)
\(\Leftrightarrow15x\le-3\)
\(\Leftrightarrow x\le\dfrac{-1}{5}\)
\(ĐK:0\le x\le3\\ PT\Leftrightarrow x^2-3x+1=-\left(x-2-\sqrt{3-x}\right)-\left(x-1-\sqrt{x}\right)\\ \Leftrightarrow x^2-3x+1+\dfrac{x^2-3x+1}{x-2+\sqrt{3-x}}+\dfrac{x^2-3x+1}{x-1+\sqrt{x}}=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+1=0\\1+\dfrac{1}{x-2+\sqrt{3-x}}+\dfrac{1}{x-1+\sqrt{x}}=0\left(1\right)\end{matrix}\right.\)
Với \(0\le x\le3\Leftrightarrow\dfrac{1}{x-2+\sqrt{3-x}}\ge\dfrac{1}{3-2+\sqrt{3-0}}>0;\dfrac{1}{x-1+\sqrt{x}}\ge\dfrac{1}{3-1+\sqrt{3}}>0\)
\(\Leftrightarrow\left(1\right)>0\left(vn\right)\\ \Leftrightarrow x^2-3x+1=0\)
`a,(x+\sqrt{3})+4(x^2-3)=0`
`<=>(x+\sqrt{3})+4(x-\sqrt{3})(x+\sqrt{3})=0`
`<=>(x+\sqrt{3})[4(x-\sqrt{3}+1]=0`
`<=>(x+\sqrt{3})(4x-4\sqrt{3}+1)=0`
`<=>` \(\left[ \begin{array}{l}x+\sqrt{3}=0\\4x-4\sqrt{3}+1=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\sqrt{3}\\4x=4\sqrt{3}-1\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=-\sqrt{3}\\x=\sqrt{3}-\dfrac{1}{4}\end{array} \right.\)
Vậy phương trình có tập nghiệm `S={-\sqrt{3},\sqrt{3}-1/4}`
\(\Leftrightarrow\left(x+\sqrt{3}\right)+4\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Leftrightarrow\left(x+\sqrt{3}\right)\left(1+4x-4\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{3}\\x=\dfrac{4\sqrt{3}-1}{4}\end{matrix}\right.\)
ĐKXĐ:\(x\ge-3\)
\(x^2+\sqrt{x+3}=3\\ \Leftrightarrow\sqrt{x+3}=3-x^2\left(-\sqrt{3}\le x\le3\right)\\ \Leftrightarrow x+3=x^4-6x^2+9\\ \Leftrightarrow x^4-6x^2-x+6=0\\ \Leftrightarrow\left(x^4-x^3\right)+\left(x^3-x^2\right)-\left(5x^2-5x\right)-\left(6x-6\right)=0\\ \Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)-5x\left(x-1\right)-6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^3+x^2-5x-6\right)=0\\ \Leftrightarrow\left(x-1\right)\left[\left(x^3+2x^2\right)-\left(x^2+2x\right)-\left(3x+6\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-\left(x+2\right)-\left(x+2\right)\right]=0\\ \Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{1+\sqrt{5}}{2}\end{matrix}\right.\)
x=1/2-căn bậc hai(13)/2, x=1
Chúc em hok tốt