\(x^2-\sqrt{x+5}=5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

NV
12 tháng 5 2019

a/ ĐKXĐ: \(x\ge5\)

\(\Leftrightarrow\sqrt{5x^2-14x+9}=5\sqrt{x+1}+\sqrt{x^2-x-20}\)

\(\Leftrightarrow5x^2-14x+9=25x+25+x^2-x-20+10\sqrt{\left(x+1\right)\left(x^2-x-20\right)}\)

\(\Leftrightarrow4x^2-38x+4=10\sqrt{\left(x+1\right)\left(x+4\right)\left(x-5\right)}\)

\(\Leftrightarrow2x^2-19x+2=5\sqrt{\left(x+1\right)\left(x+4\right)\left(x-5\right)}\)

Đến đấy bí, chẳng lẽ lại bình phương giải pt bậc 4.

Nếu đề ban đầu là \(\sqrt{5x^2+14x+9}\) thì có thể tách được

b/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow x-1+\sqrt{5+\sqrt{x-1}}=5\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a\ge0\\\sqrt{5+\sqrt{x-1}}=b>0\end{matrix}\right.\) \(\Rightarrow\sqrt{5+a}=b\Rightarrow5=b^2-a\)

Phương trình trở thành: \(a^2+b=b^2-a\)

\(\Leftrightarrow a^2-b^2+a+b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+\left(a+b\right)=0\)

\(\Leftrightarrow\left(a-b+1\right)\left(a+b\right)=0\)

\(\Leftrightarrow a+1=b\) (do \(a+b>0\))

\(\Leftrightarrow a+1=\sqrt{a+5}\)

\(\Leftrightarrow a^2+2a+1=a+5\)

\(\Leftrightarrow a^2+a-4=0\Rightarrow a=\frac{-1+\sqrt{17}}{2}\)

\(\Rightarrow\sqrt{x-1}=\frac{-1+\sqrt{17}}{2}\Rightarrow x=\frac{11-\sqrt{17}}{2}\)

25 tháng 7 2018

ĐKXĐ: \(x>4\)

\(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}=\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)

\(\Leftrightarrow\)\((\dfrac{\sqrt{x+5}}{\sqrt{x-4}})^2=(\dfrac{\sqrt{x-2}}{\sqrt{x+3}})^2\)

\(\Leftrightarrow\dfrac{x+5}{x-4}=\dfrac{x-2}{x+3}\)

\(\Leftrightarrow\dfrac{x+5}{x-4}-\dfrac{x-2}{x+3}=0\)

\(\Leftrightarrow\dfrac{(x+5)\left(x+3\right)-\left(x-2\right)\left(x-4\right)}{(x-4)\left(x+3\right)}=0\)

\(\Leftrightarrow(x+5)\left(x+3\right)-\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow x^2+8x+15-x^2+6x-8=0\)

\(\Leftrightarrow14x-7=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

25 tháng 8 2019

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3.\)

\(\Rightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}\right)=3\)

Đặt : \(\sqrt{x+5}=a\Rightarrow x+5=a^2\)

\(\sqrt{x+2}=b\Rightarrow x+2=b^2\)\(\left(đk:a,b\ge0\right)\)

\(\Rightarrow a^2-b^2=x+5-x-2=3\left(1\right)\)

Mà theo phương trình, ta có :

\(\left(a-b\right)\left(1+ab\right)=3\)

\(\Rightarrow a+a^2b-b-ab^2=3\)\(\left(2\right)\)

Tự giải hệ 

25 tháng 8 2019

\(\Leftrightarrow1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)

\(\Leftrightarrow\sqrt{x^2+7x+10}-2-\sqrt{x+5}+2-\sqrt{x+2}+1=0\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+10}+2}+\frac{x+1}{2+\sqrt{x+5}}+\frac{x+1}{1+\sqrt{x+2}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{x+6}{\sqrt{x^2+7x+10}+2}+\frac{1}{2+\sqrt{x+5}}+\frac{1}{1+\sqrt{x+2}}\right)=0\)

Giải nốt nhá ^.^

7 tháng 9 2019

\(a,\sqrt{2-x}+2x=3\)

\(\Rightarrow\sqrt{2-x}=3-2x\)

\(\Rightarrow2-x=9-12x+4x^2\)

\(\Rightarrow4x^2-11x+7=0\)

\(\Rightarrow4x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Rightarrow\left(4x-7\right)\left(x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4x-7=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{4}\\x=1\end{cases}}}\)

NV
29 tháng 6 2019

a/ ĐKXĐ:...

\(\Leftrightarrow x^2+2x+1+2x+3-2\sqrt{2x+3}+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

b/ \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xy=4\\4y^2+xy=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}5x^2+15xy=20\\16y^2+4xy=20\end{matrix}\right.\)

\(\Rightarrow5x^2+11xy-16y^2=0\)

\(\Leftrightarrow\left(x-y\right)\left(5x+16y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-\frac{16}{5}y\end{matrix}\right.\)

Bạn tự thế vào một trong hai pt giải tiếp

29 tháng 6 2019

Woa nghiệm đẹp:) Nhưng em giải đúng hay ko là một chuyện:v

ĐK: \(x\ge-\frac{3}{2}\)

PT \(\Leftrightarrow x^2+4x+3+\left(2-2\sqrt{2x+3}\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)+\frac{4-4\left(2x+3\right)}{2+\sqrt{2x+3}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)-\frac{8\left(x+1\right)}{2+\sqrt{2x+3}}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+3-\frac{8}{2+\sqrt{2x+3}}\right)=0\)

Giải cái ngoặc nhỏ suy ra x = -1

Giải cái ngoặc to:

\(\Leftrightarrow x+3=\frac{8}{2+\sqrt{2x+3}}\)

Nghiệm xấu quá :( => em bí.

24 tháng 7 2018

\(a.\sqrt[3]{2x-1}=3\)

\(\Leftrightarrow2x-1=27\)

\(\Leftrightarrow x=14\)

\(b.\sqrt[3]{x-5}=0,9\)

\(\Leftrightarrow x-5=0,729\)

\(\Leftrightarrow x=5,729\)

\(c.\sqrt[3]{x^2-2x+28}=3\)

\(\Leftrightarrow x^2-2x+28=27\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

24 tháng 7 2018

d, Ta có: \(\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)^3=5^3\)

\(\Leftrightarrow8x^2-27x-3.2.3\sqrt[3]{x^2.x}.\left(2\sqrt[3]{x^2}-3\sqrt[3]{x}\right)=125\)

Vì \(2\sqrt[3]{x^2}-3\sqrt[3]{x}=5\)

\(\Rightarrow8x^2-27x-18.x.5=125\)

\(\Leftrightarrow8x^2-117x-125=0\)

\(\Leftrightarrow8x^2+8x-125x-125=0\)

\(\Leftrightarrow\left(x+1\right)\left(8x-125\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-1\\x=\dfrac{125}{8}\end{matrix}\right.\)

3 tháng 6 2017
  1. TXD :R => \(\sqrt{x^2-8x+16}-x=2\Leftrightarrow\sqrt{\left(x-4\right)^2}-x=2\)\(\Rightarrow|x-4|-x=2\)
  • Nếu \(x\ge4\)phương trình trở thành \(\Leftrightarrow x-4-x=2\Leftrightarrow-4=2\left(Vl\right)\)
  • Nếu \(x< 4\)phương trình trở thành \(\Leftrightarrow4-x-x=2\Leftrightarrow x=1\)
  1. Câu 2 : Đk \(x\ge0\)ta có \(\sqrt{x}\left(3-2\sqrt{9}+\sqrt{16}\right)=5\Leftrightarrow\sqrt{x}\left(3-2.3+4\right)=5\)\(\sqrt{x}=5\Leftrightarrow x=25\left(tm\right)\)