\(x^2-5x+36=8\sqrt{3x+4}.\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

\(x^2-5x+36=8\sqrt{3x+4}\)

\(\Leftrightarrow x^2-5x+36-8\sqrt{3x+4}=0\)

\(\Leftrightarrow\left(-8\sqrt{3x+4}+32\right)+\left(x^2-5x+4\right)=0\)

\(\Leftrightarrow-8\left(\sqrt{3x+4}-4\right)+\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow-8.\frac{3x+4-16}{\sqrt{3x+4}+4}+\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow-8.\frac{3x-12}{\sqrt{3x+4}+4}+\left(x-1\right)\left(x-4\right)=0\)

\(\left(x-4\right)\left(\frac{-24}{\sqrt{3x+4}+4}+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\\frac{-24}{\sqrt{3x+4}+4}+x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\-\frac{24}{\sqrt{3x+4}+4}+3+x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\-3.\frac{16-3x-4}{\left(\sqrt{3x+4}+4\right)^2}+\left(x-4\right)=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\\left(x-4\right)\left[\frac{9}{\left(\sqrt{3x+4}+4\right)^2}+1\right]=0\end{cases}}\)

Mà \(\frac{9}{\left(\sqrt{3x+4}+4\right)^2}+1>0\forall x\) nên \(x-4=0\Rightarrow x=4\)

Vật PT có nghiệm duy nhất là \(x=4\)

cảm ơn bạn

Giải phương trình sau:

√3x2−5x+1−√x2−2=√3(x2−x−1)−√x2−3x+4

21 tháng 7 2019

ĐKXD: \(3x^2-7x+5\ge0;x^2-x+4\ge0;3x^2-5x+1\ge0\)

Phương trình tương đương

\(\sqrt{3x^2-7x+5}-\sqrt{3x^2-5x+1}=\sqrt{x^2-2}-\sqrt{x^2-x+4}\)

\(\left(=\right)\frac{-2\left(x-2\right)}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}=\frac{x-2}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\)

\(\left(=\right)\left(x-2\right)\left(\frac{-2}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}-\frac{1}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\right)=0\)

Dễ đàng đánh giá Trường hợp còn lại nhỏ hơn 0. Từ đó suy ra x=2(thỏa)

3 tháng 4 2020

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

3 tháng 4 2020

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Bài 1:

ĐKXĐ: $-2\leq x\leq 2$

Đặt $\sqrt{2-x}=a; \sqrt{2+x}=b(a,b\geq 0)$

Ta có: \(\left\{\begin{matrix} a+b+ab=2\\ a^2+b^2=4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=2-ab\\ (a+b)^2-2ab=4\end{matrix}\right.\)

\(\Rightarrow (2-ab)^2-2ab=4\)

\(\Leftrightarrow (ab)^2-6ab=0\Rightarrow \left[\begin{matrix} ab=0\\ ab=6\end{matrix}\right.\)

Nếu $ab=0\Rightarrow a+b=2$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2-2X=0\Rightarrow (a,b)=(0,2); (2,0)$

$\Rightarrow x=2$

Nếu $ab=6\Rightarrow a+b=-4$. Theo định lý Vi-et đảo thì $a,b$ là nghiệm của pt $X^2+4X+6=0$ (pt này vô nghiệm)

Vậy $x=2$

AH
Akai Haruma
Giáo viên
22 tháng 2 2020

Bài 2:

ĐK: $x\geq \frac{-1}{3}

PT \(\Leftrightarrow \sqrt{5x+7}=\sqrt{x+3}+\sqrt{3x+1}\)

\(\Rightarrow 5x+7=4x+4+2\sqrt{(x+3)(3x+1)}\)

\(\Leftrightarrow x+3=2\sqrt{(x+3)(3x+1)}\)

\(\Leftrightarrow \sqrt{x+3}(\sqrt{x+3}-2\sqrt{3x+1})=0\)

Vì $x\geq \frac{-1}{3}$ nên $\sqrt{x+3}\neq 0$

Do đó $\sqrt{x+3}-2\sqrt{3x+1}=0$

$\Rightarrow x+3=4(3x+1)$

$\Rightarrow x=-\frac{1}{11}$ (thỏa mãn)

Vậy..........

9 tháng 5 2018

a)X=2,81376107

b)X=2

AH
Akai Haruma
Giáo viên
2 tháng 10 2019

Lời giải:

a) ĐKXĐ: $x\ge \frac{-4}{3}$

Ta có:

PT \(\Leftrightarrow x^2-5x+36-8\sqrt{3x+4}=0\)

\(\Leftrightarrow (x^2-8x+16)+(3x+4-8\sqrt{3x+4}+16)=0\)

\(\Leftrightarrow (x-4)^2+(\sqrt{3x+4}-4)^2=0\)

Dễ thấy \((x-4)^2\geq 0; (\sqrt{3x+4}-4)^2\geq 0, \forall x\geq \frac{-4}{3}\)

Do đó để tổng của chúng bằng $0$ thì \((x-4)^2=(\sqrt{3x+4}-4)^2=0\Leftrightarrow x=4\) (thỏa mãn)

Vậy..........

b) ĐK: $x\geq \frac{2}{3}$

\(\sqrt{3x-2}=2-\sqrt{3}\)

\(\Rightarrow 3x-2=(2-\sqrt{3})^2=7-4\sqrt{3}\)

\(\Rightarrow x=\frac{7-4\sqrt{3}+2}{3}=\frac{9-4\sqrt{3}}{3}\) (thỏa mãn)

Vậy.......

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

a) ĐKXĐ: $x\ge \frac{-4}{3}$

Ta có:

PT \(\Leftrightarrow x^2-5x+36-8\sqrt{3x+4}=0\)

\(\Leftrightarrow (x^2-8x+16)+(3x+4-8\sqrt{3x+4}+16)=0\)

\(\Leftrightarrow (x-4)^2+(\sqrt{3x+4}-4)^2=0\)

Dễ thấy \((x-4)^2\geq 0; (\sqrt{3x+4}-4)^2\geq 0, \forall x\geq \frac{-4}{3}\)

Do đó để tổng của chúng bằng $0$ thì \((x-4)^2=(\sqrt{3x+4}-4)^2=0\Leftrightarrow x=4\) (thỏa mãn)

Vậy..........

b) ĐK: $x\geq \frac{2}{3}$

\(\sqrt{3x-2}=2-\sqrt{3}\)

\(\Rightarrow 3x-2=(2-\sqrt{3})^2=7-4\sqrt{3}\)

\(\Rightarrow x=\frac{7-4\sqrt{3}+2}{3}=\frac{9-4\sqrt{3}}{3}\) (thỏa mãn)

Vậy.......

NV
12 tháng 6 2019

\(x=0\) không phải nghiệm, chia 2 vế cho \(x^4\)

\(\Leftrightarrow5-\frac{2}{x^2}-3\sqrt{\frac{1}{x^2}+\frac{2}{x^4}}=\frac{4}{x^4}\)

\(\Leftrightarrow2\left(\frac{2}{x^4}+\frac{1}{x^2}\right)+3\sqrt{\frac{2}{x^4}+\frac{1}{x^2}}-5=0\)

Đặt \(\sqrt{\frac{2}{x^4}+\frac{1}{x^2}}=a>0\)

\(\Rightarrow2a^2+3a-5=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{5}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\frac{2}{x^4}+\frac{1}{x^2}=1\Leftrightarrow x^4-x^2-2=0\Rightarrow x=\pm\sqrt{2}\)

4 tháng 2 2016

\(\Leftrightarrow\sqrt{12-7x}-\sqrt{x^2-x}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)

\(\Rightarrow-\sqrt{3x^2-5x-1}-\sqrt{x^2-x}+\sqrt{x^2-3x+4}+\sqrt{12-7x}=0\)

=>\(x\approx-3,4579061804411\)

3 tháng 2 2016

ra số rất lẻ