\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

\(a,\sqrt{3-x}+\sqrt{2-x}=1\)

\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)

\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)

\(\Rightarrow2x+2\sqrt{2-x}=0\)

\(\Rightarrow x+\sqrt{2-x}=0\)

\(\Rightarrow2-x=\left(-x\right)^2\)

\(\Rightarrow2-x=x^2\)

\(\Rightarrow2-x^2-x=0\)

\(\Rightarrow x^2+x-2=0\) 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

Vậy....

5 tháng 8 2018

\(a,\sqrt{2x+5}=\sqrt{1-x}\)

\(\Rightarrow2x+5=1-x\)

\(2x+x=1-5\)

\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)

Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên

1. a) Tính:\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\) b)Tính giá trị của biểu thức:M = \(\frac{\left(x-1\right).\sqrt{3}}{\sqrt{x^2}-x+1}\) với x = \(2+\sqrt{3}\)2.CMR nếu: a) \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\) thì \(b+c\ge2a\) b) Nếu a,b >0 thì:\(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)3. a) Giải pt:   1.\(\sqrt{x^2-16x+64}-2\sqrt{x^2-8x+16}+\sqrt{x^2}=0\)   2. \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)b)...
Đọc tiếp

1. a) Tính:

\(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)

 b)Tính giá trị của biểu thức:

\(\frac{\left(x-1\right).\sqrt{3}}{\sqrt{x^2}-x+1}\) với \(2+\sqrt{3}\)

2.CMR nếu:

 a) \(\sqrt{1+b}+\sqrt{1+c}=2\sqrt{1+a}\) thì \(b+c\ge2a\)

 b) Nếu a,b >0 thì:

\(\sqrt{a}+\sqrt{b}\le\sqrt{\frac{a^2}{b}}+\sqrt{\frac{b^2}{a}}\)

3. a) Giải pt:

   1.\(\sqrt{x^2-16x+64}-2\sqrt{x^2-8x+16}+\sqrt{x^2}=0\)

   2. \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

b) giải bất pt

 \(\sqrt{x^2-4x}< \sqrt{5}\)

4*.Chứng minh rằng với mọi số nguyên dương n ta luôn có:

\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)

5*. Tìm GTNN của hàm số:

\(y=\sqrt{x+2\left(1+\sqrt{x+1}\right)}+\sqrt{x+2\left(1-\sqrt{x+1}\right)}\)

Có ai làm đc bài nào thì làm giúp mình nhé...  1 bài tkoy cũng được ạ. mình cảm ơn.

3
23 tháng 7 2018

Mấy bài này dài vật vã ghê =)))))))))))))

1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\) 

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)

=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)

\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)

=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)

b, M \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))

\(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)

\(\sqrt{3}\left(x-1\right)\)

Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:

M\(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)

Vậy với x = \(2+\sqrt{3}\)thì M\(3+\sqrt{3}\)

2, Mình chỉ giải câu a thôi nhé:

\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)

\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)

\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)

\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)

Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)

\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)

\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)

\(\Leftrightarrow2\left(b+c\right)\ge4a\)

\(\Leftrightarrow b+c\ge2a\)

4*. Thật ra cái này mình xài làm trội, làm giảm là được mà

Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)

\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)

Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)

          \(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)

  +      .........................................................

          \(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)  

Cộng tất cả vào

\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)

\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)

\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)

\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)

\(A+1>2\sqrt{n+1}-3+1\)

\(A+1>2\sqrt{n+1}-2\)

\(A+1>2\left(\sqrt{n+1}-1\right)\)

Vậy ta có điều phải chứng minh.

23 tháng 7 2018

Cảm ơn b Trần Bảo Như nha <3

27 tháng 5 2018

chỗ \(S=\left\{\sqrt{2};\frac{-\sqrt{2}}{2}\right\}\)  nha bạn mình sai chỗ đó

27 tháng 5 2018

\(\Delta=b^2-4ac=\left(-\sqrt{2}\right)^2-4.2.\left(-2\right)=18\)

\(\Delta>0\Rightarrow\)pt có 2 nghiệm phân biệt \(\sqrt{\Delta}=\sqrt{18}=3\sqrt{2}\)

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{\sqrt{2}+3\sqrt{2}}{2.2}=\sqrt{2}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{\sqrt{2}-3\sqrt{2}}{2.2}=\frac{-\sqrt{2}}{2}\)

Vậy \(S=\left\{2;\frac{-\sqrt{2}}{2}\right\}\)

28 tháng 7 2018

a)  ĐK:  \(x\ge5\)

 \(\sqrt{4x-20}+\frac{1}{3}\sqrt{9x-45}-\frac{1}{5}\sqrt{16x-80}=0\)

\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}+\frac{1}{3}\sqrt{9\left(x-5\right)}-\frac{1}{5}\sqrt{16\left(x-5\right)}=0\)

\(\Leftrightarrow\)\(2\sqrt{x-5}+\sqrt{x-5}-\frac{4}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(\frac{11}{5}\sqrt{x-5}=0\)

\(\Leftrightarrow\)\(x-5=0\)

\(\Leftrightarrow\)\(x=5\) (t/m)

Vậy

b)  \(-5x+7\sqrt{x}=-12\)

\(\Leftrightarrow\)\(5x-7\sqrt{x}-12=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)

đến đây tự làm

c) d) e) bạn bình phương lên

28 tháng 7 2018

f)  \(VT=\sqrt{3\left(x^2+2x+1\right)+9}+\sqrt{5\left(x^4-2x^2+1\right)+25}\)

             \(=\sqrt{3\left(x+1\right)^2+9}+\sqrt{5\left(x^2-1\right)^2}\)

           \(\ge\sqrt{9}+\sqrt{25}=8\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}}\)\(\Leftrightarrow\)\(x=-1\)

Vậy...

23 tháng 12 2015

ĐKXĐ x \(\ge\)0

ta có pt <=> \(2\left(x^2+2\right)-2x=3\sqrt{x\left(x^2+2\right)}\)

Đặt \(\sqrt{x}=a;\sqrt{x^2+2}=b\) ta đc

\(2b^2-2a^2=3ab\Leftrightarrow\left(a-2b\right)\left(2a+b\right)=0\)

Th1: a=2b

TH2: a= \(\frac{-1}{2}b\) đến đây bạn tự giải

23 tháng 12 2015

xạo quần hả m , cái này t mới sáng tác ra đó 

30 tháng 9 2015

Điều kiện xác định của hệ: \(x\ge0,y\ge5.\)

Kí hiệu \(VT,VP\) tương ứng là vế trái và phải của phương trình thứ nhất.

Nếu \(x>y-5\to x+4>y-1,x+2>y-3\to VT>VP.\)
Nếu \(x<\)\(y-5\)  thì tương  tự \(VT<\)\(VP.\)

Vậy \(x=y-5.\)

Thay vào phương trình thứ hai cho ta 

\(\left(y-5\right)^2+y^2+\left(y-5\right)+y=44\Leftrightarrow2y^2-8y-24=0\to y^2-4y-12=0\to\)

\(\to\left(y-6\right)\left(y+2\right)=0\to y=-2,6.\) Vì \(y\ge5\to y=6\to x=1.\)

Vậy nghiệm của hệ là \(\left(x,y\right)=\left(1,6\right).\)