K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+3\sqrt{x^2+3x}=10-3x\)

=>\(x^2+3x+3\sqrt{x^2+3x}-10=0\)

=>\(\left(\sqrt{x^2+3x}\right)^2+3\sqrt{x^2+3x}-10=0\)

=>\(\left(\sqrt{x^2+3x}+5\right)\left(\sqrt{x^2+3x}-2\right)=0\)

\(\Leftrightarrow\sqrt{x^2+3x}-2=0\)

=>\(\sqrt{x^2+3x}=2\)

=>x^2+3x=4

=>x^2+3x-4=0

=>(x+4)(x-1)=0

=>x=1 hoặc x=-4

8 tháng 8 2023

E cám ơn ạ

4 tháng 7 2017

\(\sqrt{x^2+4x+3}+\sqrt{x^2+x}=\sqrt{3x^2+4x+1}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}+\sqrt{x\left(x+1\right)}=\sqrt{\left(x+1\right)\left(3x+1\right)}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}+\sqrt{x\left(x+1\right)}-\sqrt{\left(x+1\right)\left(3x+1\right)}=0\)

\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{x+3}+\sqrt{x}-\sqrt{3x+1}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x+1}=0\\\sqrt{x+3}+\sqrt{x}=\sqrt{3x+1}\end{cases}}\)

Suy ra x=-1 pt còn lại bình lên là thấy vô nghiệm

18 tháng 7 2023

(\(x\) - 2)(\(\sqrt{3x+1}\) ) - 1 = 3\(x\)  Đk : 3\(x\) + 1 ≥ 0;  \(x\) ≥ - \(\dfrac{1}{3}\)

(\(x\) - 2)(\(\sqrt{3x+1}\)) - (3\(x\) + 1) = 0

\(\sqrt{3x+1}\).(\(x\) - 2 - \(\sqrt{3x+1}\)) = 0

\(\left[{}\begin{matrix}\sqrt{3x+1}=0\\x-2-\sqrt{3x+1}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x-2=\sqrt{3x+1}\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2-4x+4=3x+1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2-7x+3=0\end{matrix}\right.\)

\(x^2\) - 7\(x\) + 3 = 0

△ = 49 -12 = 37

\(x_1\) = \(\dfrac{7+\sqrt{37}}{2}\)

\(x_{_{ }2}\) = \(\dfrac{-7-\sqrt{37}}{2}\) (loại)

 

 

          

9 tháng 7 2017

Đk:\(x\ge0\)

\(\sqrt{x+3}+\sqrt{3x+1}=2\sqrt{x}+\sqrt{2x+2}\)

\(pt\Leftrightarrow\sqrt{x+3}-2+\sqrt{3x+1}-2=2\sqrt{x}-2+\sqrt{2x+2}-2\)

\(\Leftrightarrow\frac{x+3-4}{\sqrt{x+3}+2}+\frac{3x+1-4}{\sqrt{3x+1}-2}=\frac{4x-4}{2\sqrt{x}+2}+\frac{2x+2-4}{\sqrt{2x+2}+2}\)

\(\Leftrightarrow\frac{x-1}{\sqrt{x+3}+2}+\frac{3x-3}{\sqrt{3x+1}-2}=\frac{4x-4}{2\sqrt{x}+2}+\frac{2x-2}{\sqrt{2x+2}+2}\)

\(\Leftrightarrow\frac{x-1}{\sqrt{x+3}+2}+\frac{3\left(x-1\right)}{\sqrt{3x+1}-2}-\frac{4\left(x-1\right)}{2\sqrt{x}+2}-\frac{2\left(x-1\right)}{\sqrt{2x+2}+2}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{x+3}+2}+\frac{3}{\sqrt{3x+1}-2}-\frac{4}{2\sqrt{x}+2}-\frac{2}{\sqrt{2x+2}+2}\right)=0\)

Dễ thấy: \(\frac{1}{\sqrt{x+3}+2}+\frac{3}{\sqrt{3x+1}-2}-\frac{4}{2\sqrt{x}+2}-\frac{2}{\sqrt{2x+2}+2}>0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)