K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2020

Bài 2 :

a, Ta có : \(\left(x+4\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

b, Ta có : \(\left(3x-2\right)\left(4x-7\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4x-7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\4x=7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{7}{4}\end{matrix}\right.\)

c, Ta có : \(\left(x+5\right)\left(x^2+1\right)=0\)

=> \(\left[{}\begin{matrix}x+5=0\\x^2+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-5\\x^2+1=0\left(VL\right)\end{matrix}\right.\)

d, Ta có : \(x\left(x-1\right)\left(x^2+4\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=1\\x^2+4=0\left(VL\right)\end{matrix}\right.\)

e, Ta có : \(\left(3x+2\right)\left(x+\frac{1}{2}\right)=0\)

=> \(\left[{}\begin{matrix}3x+2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{1}{2}\end{matrix}\right.\)

f, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x^2+7\right)=0\)

=> \(\left[{}\begin{matrix}x+2=0\\x-3=0\\x^2+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-2\\x=3\\x^2+7=0\left(VL\right)\end{matrix}\right.\)

8 tháng 2 2020

Bài 1 :

a, Ta có : \(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)

=> \(\frac{12}{12}-\frac{3\left(x+3\right)}{12}-\frac{2\left(x-2\right)}{12}=0\)

=> \(12-3\left(x+3\right)-2\left(x-2\right)=0\)

=> \(12-3x-9-2x+4=0\)

=> \(-5x=-7\)

=> \(x=\frac{7}{5}\)

4 tháng 7 2020

a. (x+4)(\(\frac{1}{4}\)x-1)=0

=>[\(\begin{matrix}x+4=0\\\frac{1}{4}x-1=0\end{matrix}\)

=>[\(\begin{matrix}x=-4\\\frac{1}{4}x=1\end{matrix}\)

=>[\(\begin{matrix}x=-4\left(n\right)\\x=4\left(n\right)\end{matrix}\)

S={-4;4}

b.

\(\frac{x^2+4x+4}{x^2-4}\) -\(\frac{x^2-4x+4}{x^2-4}\) =\(\frac{4}{x^2-4}\)

=>\(x^2+4x+4-x^2+4x-4-4=0\)

⇔ 8x - 4=0

⇔x=\(\frac{1}{2}\) (n)

S=\(\left\{\frac{1}{2}\right\}\)

c.

=>2x-10< 5x+5

=>-3x <15

=> x > 5 (n)

{x/x>5}

a) \(15x-3\left(3x-2\right)=45-5\left(2x-5\right)\)

\(\Leftrightarrow15x-9x+6=45-10x+25\)

\(\Leftrightarrow15x-9x+10x=45+25-6\)

\(\Leftrightarrow16x=64\)

\(\Leftrightarrow x=4\)

b) \(x^2-9+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-3\right)+4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\x+7=0\Leftrightarrow x=-7\end{matrix}\right.\)

c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)

\(\Leftrightarrow\dfrac{x+4+\left(x+2\right)\left(x-4\right)}{\left(x-4\right)\left(x+4\right)}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\)

\(\Leftrightarrow x+4+x^2-4x+2x-8=5x-4\)

\(\Leftrightarrow x^2+x-4x+2x-5x=-4+8-4\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\Leftrightarrow x=6\end{matrix}\right.\)

12 tháng 4 2018

a) 15x - 3(3x - 2) = 45 - 5(2x - 5)

\(\Leftrightarrow\) 15x - 9x + 6 = 45 - 10x + 25

\(\Leftrightarrow\) 6x + 10x = 70 - 6

\(\Leftrightarrow\) 16x = 64

\(\Leftrightarrow\) x = 4

Vậy.......................

b) x2 - 9 + 4(x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 3) + 4(x - 3) = 0

\(\Leftrightarrow\) (x - 3)(x + 3 + 4) = 0

\(\Leftrightarrow\) (x - 3)(x + 7) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=3\end{matrix}\right.\)

Vậy........................

c) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{x^2-16}\)

\(\Leftrightarrow\) \(\dfrac{1}{x-4}+\dfrac{x+2}{x+4}=\dfrac{5x-4}{\left(x-4\right)\left(x+4\right)}\) (đk: x\(\ne\pm\)4)

\(\Leftrightarrow\) \(\dfrac{x+4}{\left(x+4\right)\left(x-4\right)}+\dfrac{\left(x+2\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5x-4}{\left(x+4\right)\left(x-4\right)}\)

\(\Leftrightarrow\) x + 4 + x2 - 4x + 2x - 8 = 5x - 4

\(\Leftrightarrow\) x2 - x - 5x - 4 + 4 = 0

\(\Leftrightarrow\) x2 - 6x = 0

\(\Leftrightarrow\) x(x - 6) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tmđk\right)\\x=6\left(tmđk\right)\end{matrix}\right.\)

Vậy...............

7 tháng 7 2018

1)

\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)

\(\Leftrightarrow x=105\)

b)

\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)

\(\Leftrightarrow50-x=0\)

\(\Leftrightarrow x=50\)

7 tháng 7 2018

2)

\(\left(5x+1\right)^2=\left(3x-2\right)^2\)

\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)

b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)

\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)

\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)

\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)

\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

12 tháng 5 2018

Đặt \(t=x^2+x-5\)

\(\Leftrightarrow\frac{t}{x}+\frac{3x}{t}+4=0\)

\(\Leftrightarrow\frac{t^2+4xt+3x^2}{xt}=0\)

\(\Leftrightarrow t^2+4xt+3x^2=0\)

\(\Leftrightarrow t^2+xt+3xt+3x^2=0\)

\(\Leftrightarrow t\left(t+x\right)+3x\left(t+x\right)=0\)

\(\Leftrightarrow\left(t+3x\right)\left(t+x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+3x=0\\t+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+x-5+3x=0\\x^2+x-5+x=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-5=0\\x^2+2x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+5x-x-5=0\\x^2+2x+1-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)-\left(x+5\right)=0\\\left(x+1\right)^2=6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+5\right)=0\\x+1=\sqrt{6};x+1=-\sqrt{6}\end{cases}}\)

\(\Leftrightarrow x=1,x=5,x=-1+\sqrt{6},x=-1-\sqrt{6}\)

Vậy \(S=\left\{1;5;-1+\sqrt{6};-1-\sqrt{6}\right\}\)

a) \(\left(x+4\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

Vậy pt trên có nghiệm \(x\in\left\{-4;1\right\}\)

b) \(\left(x+5\right)\left(x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-5\left(Nhận\right)\\x^2=-1\left(loại\right)\end{matrix}\right.\)

Vậy pt trên có nghiện x=-5

10 tháng 2 2020

a) \(\left(x+4\right).\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0-4\\x=0+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-4;1\right\}.\)

b) \(\left(x+5\right).\left(x^2+1\right)=0\)

\(x^2\ge0\) \(\forall x.\)

\(\Rightarrow x^2+1>0\) \(\forall x.\)

\(\Rightarrow x^2+1\ne0.\)

\(\Leftrightarrow x+5=0\)

\(\Leftrightarrow x=0-5\)

\(\Leftrightarrow x=-5.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{-5\right\}.\)

Chúc bạn học tốt!

4 tháng 5 2018

*\(\dfrac{x-1}{x+2}\)-\(\dfrac{x}{x+2}\)=\(\dfrac{5x-2}{4-x^2}\).ĐKXĐ: x\(\ne\pm2\)

<=>\(\dfrac{\left(x-1\right)\left(2-x\right)}{4-x^2}\)-\(\dfrac{x\left(2-x\right)}{4-x^2}\)=\(\dfrac{5x-2}{4-x^2}\)

=>2x-\(x^2\)-2+x-2x+\(x^2\)=5x-2

<=>x-2=5x-2

<=>x-5x=2-2

<=>-4x=0

<=> x = 0(TM)

Vậy phương trình có tập nghiệm là S={0}

4 tháng 5 2018

*(x+4)(5x+9)-x-4=0

<=>(x+4)(5x+9)-(x+4)=0

<=>(x+4)(5x+9-1)=0

<=>(x+4)(5x+8)=0

<=>x+4= 0 hoặc 5x+8=0

(+) x+4=0 (+)5x+8=0

<=>x=-4 <=>5x=-8

<=>x=\(\dfrac{-8}{5}\)

Vậy phương trình có tập nghiệm là S={\(-4;\dfrac{-8}{5}\)}

1: \(\Leftrightarrow x^4+x^3+x^2-x^3-x^2-x+2008x^2+2008x+2008=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+2008\right)=0\)

hay \(x\in\varnothing\)

2: \(x^4+x^2+6x-8=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)

hay \(x\in\left\{1;-2\right\}\)