Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(-\frac{16}{3}\le x\le4\)
\(\Leftrightarrow3x^2-12x+36=12\sqrt{4-x}+3\sqrt{3x+16}\)
\(\Leftrightarrow3x^2-9x+4\left(6-x-3\sqrt{4-x}\right)+\left(x+12-3\sqrt{3x+16}\right)=0\)
\(\Leftrightarrow3\left(x^2-3x\right)+\frac{4\left(x^2-3x\right)}{6-x+3\sqrt{4-x}}+\frac{x^2-3x}{x+12+3\sqrt{3x+16}}=0\)
\(\Leftrightarrow\left(x^2-3x\right)\left(3+\frac{4}{6-x+3\sqrt{4-x}}+\frac{1}{x+12+3\sqrt{3x+16}}\right)=0\)
\(\Leftrightarrow x^2-3x=0\)
a) \(\sqrt{x^2-16}-3\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{x^2-16}=3\sqrt{x-4}\)
\(\Leftrightarrow\sqrt{x^2-16}=\sqrt{9x-36}\)
\(\Leftrightarrow x^2-16=9x-36\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)-9x+36=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)-9\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
vậy ...
Do vế trái dương nên pt chỉ có nghiệm khi \(x\ge\dfrac{3}{4}\), kết hợp điều kiện \(2x^4-3x^2+1\ge0\Rightarrow x\ge1\)
Khi đó:
\(4x-3=\sqrt{2x^4-3x^2+1}+\sqrt{2x^4-x^2}\ge\sqrt{2x^4-3x^2+1+2x^4-x^2}\)
\(\Rightarrow4x-3\ge\sqrt{4x^4-4x^2+1}\)
\(\Rightarrow4x-3\ge\left|2x^2-1\right|=2x^2-1\)
\(\Rightarrow2x^2-4x+2\le0\)
\(\Rightarrow2\left(x-1\right)^2\le0\)
\(\Rightarrow x=1\)
b2
\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)
Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)
Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)
và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)
Do đó \(VT\ge VF\)
Dấu = xảy ra khi\(x=\frac{1}{2}\)
Ta có:
\(x^4-3x^3+4x^2+16=12\sqrt[3]{3x^2-4}\)
\(\Leftrightarrow x^4-3x^3+4x^2-12x+16=12\left(\sqrt[3]{3x^2-4}-x\right)\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+x+4\right)+\frac{12\left(x-2\right)^2\left(x+1\right)}{\sqrt[3]{\left(3x^2-4\right)^2}+\sqrt[3]{3x^2-4}.x+x^2}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[x^2+x+4+\frac{12\left(x+1\right)}{\sqrt[3]{\left(3x^2-4\right)^2}+\sqrt[3]{3x^2-4}.x+x^2}\right]=0\)
\(\Leftrightarrow x-2=0\)(vì \(x^2+x+4+\frac{12\left(x+1\right)}{\sqrt[3]{\left(3x^2-4\right)^2}+\sqrt[3]{3x^2-4}.x+x^2}>0\))
\(\Leftrightarrow x=2\).