K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2023

`1/9(x-3)^2-1/25(x+5)^2=0`

`<=>(1/3x-1)^2-(1/5x+1)^2=0`

`<=>(1/3x-1-1/5x-1)(1/3x-1+1/5x+1)=0`

`<=>(2/15x-2). 8/15x=0`

`<=>2/15x-2=0` hoặc `8/15x=0`

`<=>x=15`         hoặc `x=0`

Vậy `S=`{`15;0`}

NV
13 tháng 2 2020

ĐKXĐ: \(\left\{{}\begin{matrix}u\ne\frac{1}{3}\\u\ne-\frac{11}{3}\end{matrix}\right.\)

\(\frac{1}{\left(3u-1\right)^2}-\frac{3}{\left(3u+11\right)^2}+\frac{2}{\left(3u-1\right)\left(3u+11\right)}=0\)

\(\Leftrightarrow\left(3u+11\right)^2-3\left(3u-1\right)^2+2\left(3u-1\right)\left(3u+11\right)=0\)

\(\Leftrightarrow\left(3u+11\right)^2-\left(3u-1\right)\left(3u+11\right)+3\left[\left(3u-1\right)\left(3u+11\right)-\left(3u-1\right)^2\right]=0\)

\(\Leftrightarrow12\left(3u+11\right)-36\left(3u-1\right)=0\)

\(\Leftrightarrow3u=7\Rightarrow u=\frac{7}{3}\)

ĐKXĐ: \(\left\{{}\begin{matrix}1-3u\ne0\\3u+11\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3u\ne1\\3u\ne-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u\ne\frac{1}{3}\\u\ne-\frac{11}{3}\end{matrix}\right.\)

Ta có: \(\frac{2}{\left(1-3u\right)\left(3u+11\right)}=\frac{1}{9u^2-6u+1}-\frac{3}{\left(3u+11\right)^2}\)

\(\Leftrightarrow\frac{2}{\left(1-3u\right)\left(3u+11\right)}-\frac{1}{\left(3u-1\right)^2}+\frac{3}{\left(3u+11\right)^2}=0\)

\(\Leftrightarrow\frac{2\cdot\left(1-3u\right)\cdot\left(3u+11\right)}{\left(1-3u\right)^2\left(3u+11\right)^2}-\frac{\left(3u+11\right)^2}{\left(1-3u\right)^2\left(3u+11\right)^2}+\frac{\left(1-3u\right)^2\cdot3}{\left(3u+11\right)^2\left(1-3u\right)^2}=0\)

\(\Leftrightarrow\left(2-6u\right)\left(3u+11\right)-\left(9u^2+66u+121\right)+\left(1-6u+9u^2\right)\cdot3=0\)

\(\Leftrightarrow6u+22-18u^2-66u-9u^2-66u-121+3-18u+27u^2=0\)

\(\Leftrightarrow-144u-96=0\)

\(\Leftrightarrow-144u=96\)

\(\Leftrightarrow u=-\frac{96}{144}=-\frac{2}{3}\)(thỏa mãn)

Vậy: \(u=-\frac{2}{3}\)

24 tháng 4 2022

1.a)|−7x|=3x+16

Vì |-7x| ≥ 0  nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\)    (*)

Với đk (*), ta có: |-7x|=3x+16

\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔  \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)

⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)

b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)

⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)

⇒ x- 2x - x + 2 - x- 2x = 5x - 8  

⇔ -5x - 5x = -8 - 2

⇔ -10x = -10

⇔ x=1

2.7x+5 < 3x−11

⇔ 7x - 3x < -11 - 5

⇔ 4x < -16

⇔ x < -4

bạn tự biểu diễn trên trục số nha !

 

 

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

=>x^3+6x^2+12x+8+1/3(8x^3-24x^2+24x-8)=1/5x+2/5+8

=>x^3+6x^2+12x+8+8/3x^3-8x^2+8x-8/3=1/5x+42/5

=>11/3x^3-2x^2+20x+16/3-1/5x-42/5=0

=>11/3x^3-11/5x^2+20x-46/15=0

=>\(x\simeq0,16\)

2 tháng 9 2023

latex đi anh, khó hiểu quá.